AI for Science Town Hall Series Kicks off at Argonne

By Tiffany Trader

August 2, 2019

Last week (July 22-23), Argonne National Lab, future home to the Intel-Cray Aurora supercomputer, hosted the first in a series of four AI for Science town hall meetings being convened by Department of Energy laboratories. The meetings are aimed at soliciting and collecting “community input on the opportunities and challenges facing the scientific community in the era of convergence of high-performance computing and artificial intelligence (AI) technologies.”

In alignment with DOE missions and the U.S. national AI initiative, the DOE community and their collaborators are being engaged to discuss broadly the opportunities that can be realized by advancing and accelerating the development of AI capabilities for science and science use cases.

Rick Stevens

“We’re asking the fundamental question: what do we have to do in the AI space to make it relevant for science? The point of the town halls is to get people thinking about what opportunities there are in different scientific domains for breakthrough science that can be accomplished by leveraging AI and working AI into simulation, bringing AI into big data, bringing AI to the facility and so forth,” said Argonne’s Rick Stevens in an interview with HPCwire. Stevens is co-chairing the town hall program along with Berkeley Lab’s Kathy Yelick and Oak Ridge Lab’s Jeff Nichols.

Each of the four town halls (held at Argonne, Oak Ridge, Berkeley, and in Washington, DC) encompasses high-level talks, application tracks and cross-cutting breakout sessions. The two-day Argonne event drew about 350 people, DOE and university researchers, primarily from the Midwest region, with about 150 people coming from other parts of the country (including broad lab participation).

The first day focused on application breakouts by science domain (e.g., chemistry, mathematics, materials, climate, biology, high energy physics, nuclear physics); on day two, participants were reoriented to cross-cutting topics, spanning fundamental math issues, software issues, data issues, understandability issues, uncertainty quantification, facilities, integration of simulation and AI, computer architecture directions, among others.

The town halls will result in an integrated report to be published by the end of the year, which will inform strategic planning, and help shape programs and budgets.

If the town hall format sounds familiar, you may recall that a series of exascale town halls was held in 2007, helping sow the seeds for the US Department of Energy’s Exascale Computing Initiative (ECI) and Exascale Computing Project (ECP). Together these activities, with a focus on codesign, application readiness and “capable exascale,” are preparing the U.S. to stand up multiple exascale-class systems in the 2021-2023 timeframe.

Learnings from the AI town halls could conceivably lead to a more targeted, and potentially funded, policy not unlike how the exascale town halls helped establish a robust national exascale program.

“We’ve got this huge exascale program and we’re now asking the question, what’s the opportunity for AI in the science space, particularly in the context of DOE but also more broadly with NIH and other agencies,” said Stevens, Argonne’s associate laboratory director for computing, environment and life sciences.

Maintaining leadership in AI is the primary directive of the U.S. national AI initiative, launched by the White House in February. The announcement and subsequent OMB budget priority letters that went out to the agencies declared progress in AI as the number one priority across the agencies.

That AI initiative also challenged agencies to come up with plans, to determine resource levels, and make progress on managing their data. It laid out a very high level blueprint as to what the country needs to do maintain progress in AI and to complement in the academic and government sector what’s going on at the internet companies, Stevens told HPCwire.

The Chicago AI for Science Town Hall at Argonne National Laboratory

“Clearly there’s huge progress in the internet space, but those Facebooks and Googles and Microsofts and Amazons and so on, those guys are not going to be the primary drivers for AI in areas like high-energy physics or nuclear energy or wind power or new materials for solar or for cancer research – it’s not their business focus,” Stevens maintained. “We recognize that the challenge is how to leverage the investments made by the private sector to build on those [advances] to add what’s missing for scientific applications — and there’s lots of things missing. And then figure out what the computing community has to do to position the infrastructure and our investments in software and algorithms and math and so on to bring the AI opportunity closer to where we currently are.”

The overarching agenda for the AI for Science town hall program includes a set of “charge questions” aimed at surfacing the most compelling problems where AI could have an impact and identifying the requirements at the research and facility level needed to realize these opportunities.

We posed one of these questions to Stevens: What are 3-5 open questions that need to be addressed to maximally contribute to AI impact in the science domains and AI impact in the enabling technologies?

His top three:

+ Uncertainty quantification, i.e. model confidence — “When you’re doing cat videos, no one cares what your confidence interval is, where your error bars are exactly, but in a scientific, a medical application, you need to know that the answer is likely to be correct.”

+ The direction of AI architectures – “Are the architectures that are being developed to accelerate general AI research – are they in fact even what we need for the types of data and the types of networks and systems we need to build for applying AI in science?”

+ Injecting AI with ground truth – “Our first way of thinking about the world is in some sense, do we have a mechanistic model of it, a physical model to simulate? And most of the progress in AI involves non-physical modeling. If you think about natural language processing, there’s no physical model for that. If you think about computer vision, most of the kinds of things that people do with computer vision, there’s no physical model; there is no ground truth that you can generate from first principles. But in many scientific areas, we’ve had 400 years of progress, in physics and chemistry and biology and so forth, and we have a lot of physical understanding. How do we use that physical understanding combined with data to build AI models that actually internalize that physical understanding? In other words, having these models be able to make predictions in the world as opposed to in some abstract space.”

The AI for Science Town Hall series continues at Oak Ridge National Laboratory (Aug. 20-21, 2019), Lawrence Berkeley National Laboratory (Sept. 11-12, 2019) and Washington DC (Oct. 22-23, 2019).

Link for more info: https://web.cvent.com/event/b03cf98d-d350-4f66-805a-1a19f03bdcf8/summary

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire