LLNL, Purdue Researchers Harness GPU Mixed Precision for Accuracy-Performance Tradeoff

August 5, 2019

Editor’s Note: Effective use of mixed precision calculations is becoming more important and common in scientific computing, not least because of the growing use of AI techniques in which FP64 calculations are sometimes less needed and computationally expensive. In this brief article, researchers from Lawrence Livermore National Laboratory discuss their recent breakthrough development of an auto-tuning technique for selecting optimal mixed precision calculation modes using GPUs.

Computational scientists have long relied on high-precision arithmetic to accurately solve a wide range of problems, from modeling nuclear reactors to predicting supernova physics to measuring the forces within an atomic nucleus. However, changes to hardware, spurred by the demand for more computing capability and growth in machine learning, have us rethinking the balance between the number of digits needed to perform a given calculation and computational efficiency.

Researchers from Purdue University, Prof. Saurabh Bagchi, and the U.S. Department of Energy’s Lawrence Livermore National Laboratory, Dr. Ignacio Laguna, have taken an essential step toward enabling mixed precision calculations on GPUs through novel automatic tuning methods that can be applied to real-world CUDA programs. For portions of a calculation that do not require full 64-bit double-precision arithmetic, lower precision alternatives may provide enough accuracy. The tradeoff could enable us to solve complex problems faster and at lower energy budgets, thus enabling scientific discoveries that would otherwise remain hidden away from us.

The work (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications) recently won the best paper award at the 33rd ISC High Performance conference held June 16-20, 2019, in Frankfurt and which brought together over 3,500 researchers and commercial users. Another result from the work appeared at the 33rd International Conference on Supercomputing (ICS), held June 26-28, in Phoenix, Ariz.

The challenge that the scientific community has been trying to solve is how do we reduce the precision of the variables in a systematic manner—only those variables that would not degrade the quality of the overall result too much and their precision is reduced to the right level. Several recent changes in the GPU space have created new opportunities for mixed precision arithmetic. GPU manufacturers have begun to include native FP64 (double precision) and FP16 (half precision) arithmetic units inside of their processing units, in addition to FP32 (single precision). As a result, FP64/FP32/FP16 instructions can coexist providing different performance levels, e.g., the ratio of FP64:FP32:FP16 throughput is 1:2:4 in the P100 series of Tesla GPUs. Before the introduction of these processors, mixing FP64 and FP32 instructions had limited performance impact because mixed precision math units were rare.

The research team recently published their breakthrough result on this technical challenge.

  • PI Saurabh Bagchi said, “This solution will allow the long-running codes on GPUs, those that do a significant amount of floating-point processing, to use just the right precision of the variables to maximize speedup or alternately minimize energy consumption, and bounding the drop in quality of the output.”
  • Laguna said, “This automated approach selects precisions for floating-point arithmetic operations that both improve performance andsatisfy accuracy requirements, without needing the programmer to do the laborious tuning of the precisions.” Purdue students, Pradeep Kotipalli and Ranvijay Singh (now at NVIDIA), and Purdue Research Scientist, Dr. Paul Wood (now at Johns Hopkins University), did a significant part of the technical design and development.

No prior work has support for parallel codes found in GPU programming models as they relied on serial instrumentation or profiling support that does not span the GPU programming and execution model, such as CPU-to-GPU calls. Next, accuracy-centric approaches of the prior work lacked a performance model and simply assumed that minimal precision results in the fastest running time. For example in [figure 1], the objective function was to maximize the number of FP32 variables.

In practice, mixing precision requires casting to satisfy the mathematical operation with the most precise operand. However, casting is an expensive operation (e.g., twice as expensive as FP64 operations in the authors’ target GPU architectures) and therefore reducing precisions may actually increase the execution time. Further, when there are parallel resource pools for FP64 and FP32 (as in several GPU architectures), mixing precision allows for an additional opportunity for parallelism, which prior work ignored. Finally, approaches that solely used online runtime information [2] suffered from very large search space problems. Consider that there are nfloating point variables that can be tuned and there are 3 precision levels supported by the architecture; then the search space is 3n. In large production-level scientific applications, ncan be very large (hundreds), making this method impractical.

The authors presented AMPT-GA, pronounced “Amp-ed GA”, the first mixed precision optimization system that solves an accuracy-constrained performance maximization problem for GPU programs. AMPT-GA seeks to select the set of precision levels for floating point variables at an application level that maximizes the performance while keeping the introduced error below a tolerable threshold, as defined by the application user. The complete set of assignments of each floating point variable to a precision level is called the Precision Vector (PV) and the optimal PV is the final output of AMPT-GA.

The key insight behind AMPT-GA is that the dynamic search technique through the large space of possible precision vectors is aided by static analysis.Their static analysis identifies groups of variables whose precisions should preferentially be changed together to reduce the performance impact of the precision change of any variable through casting. Such information speeds up the online search through the large search space. Further, considering the irregular nature of the search space, AMPT-GA uses a Genetic Algorithm for the search, which helps avoid local minima that prior approaches such as [2, 3] have a tendency to fall into.

Figure 1. Overview of AMPT-GA. The inputs to AMPT-GA, shaded in green, are the application, the GPGPU properties (such as FP32 vs. FP64 instruction performance, casting cost), the error metric of interest and the corresponding error threshold, a test input, and the fuzzing process to generate similar inputs. The static path (in yellow) creates a performance and dependency model and the dynamic path (in blue) finds the Precision Vector (PV) to minimize the execution time of the application while staying under the error threshold. The blue optimization boxes are part of an iterative optimization process that run multiple generations of a Genetic Algorithm to identify the output PV. The purple boxes are measurements executed on the target GPGPU platform. During the search, each PV is evaluated through actual execution on the GPGPU unless filtered by our execution filter. The final PV for the test input is then measured against a region of similar inputs to determine its generality.

The ISC paper, GPUMixer, presents the first static analysis to identify regions of code in a GPU kernel that are guaranteed to improve performance when mixed-precision is used. While previous approaches can identify mixed-precision code segments that improve performance, they are usually dynamic in nature and require running the application many times. This approach, however, identifies these regions statically, which avoids running the application. GPUMixer also presents the first shadow computation analysis for GPUs, a method that allows estimating the error that is introduced when the precision of specific arithmetic operations is downgraded.

The team has shown the power of AMPT-GA and GPUMixer on several real GPU programs, including LULESH, a DOE’s proxy application that approximates hydrodynamics equations discretely and which has been widely used in the procurement of DOE’s next-generation supercomputers and on DOE’s Co-Design Centers. The evaluation on LULESH, the CoMD proxy application, and on several Rodinia GPU benchmarks demonstrates the practical utility of AMPT-GA and GPUMixer on finding mixed-precision configurations that improve performance and maintain an acceptable level of error.

Looking forward the work is continuing to improve the design of these methods so that even lower precision can be leveraged (e.g., half precision or lower) and better mixed-precision combinations can be found more efficiently.

Link to paper (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications): http://lagunaresearch.org/docs/isc-2019.pdf

Authors: Ignacio Laguna (LLNL), Paul C. Wood (Johns Hopkins Applied Physics Lab), Ranvijay Singh (Nvidia), and Saurabh Bagch (Purdue University)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (Lawrence Livermore National Security, LLC – LLNL-MI-774142).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire