LLNL, Purdue Researchers Harness GPU Mixed Precision for Accuracy-Performance Tradeoff

August 5, 2019

Editor’s Note: Effective use of mixed precision calculations is becoming more important and common in scientific computing, not least because of the growing use of AI techniques in which FP64 calculations are sometimes less needed and computationally expensive. In this brief article, researchers from Lawrence Livermore National Laboratory discuss their recent breakthrough development of an auto-tuning technique for selecting optimal mixed precision calculation modes using GPUs.

Computational scientists have long relied on high-precision arithmetic to accurately solve a wide range of problems, from modeling nuclear reactors to predicting supernova physics to measuring the forces within an atomic nucleus. However, changes to hardware, spurred by the demand for more computing capability and growth in machine learning, have us rethinking the balance between the number of digits needed to perform a given calculation and computational efficiency.

Researchers from Purdue University, Prof. Saurabh Bagchi, and the U.S. Department of Energy’s Lawrence Livermore National Laboratory, Dr. Ignacio Laguna, have taken an essential step toward enabling mixed precision calculations on GPUs through novel automatic tuning methods that can be applied to real-world CUDA programs. For portions of a calculation that do not require full 64-bit double-precision arithmetic, lower precision alternatives may provide enough accuracy. The tradeoff could enable us to solve complex problems faster and at lower energy budgets, thus enabling scientific discoveries that would otherwise remain hidden away from us.

The work (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications) recently won the best paper award at the 33rd ISC High Performance conference held June 16-20, 2019, in Frankfurt and which brought together over 3,500 researchers and commercial users. Another result from the work appeared at the 33rd International Conference on Supercomputing (ICS), held June 26-28, in Phoenix, Ariz.

The challenge that the scientific community has been trying to solve is how do we reduce the precision of the variables in a systematic manner—only those variables that would not degrade the quality of the overall result too much and their precision is reduced to the right level. Several recent changes in the GPU space have created new opportunities for mixed precision arithmetic. GPU manufacturers have begun to include native FP64 (double precision) and FP16 (half precision) arithmetic units inside of their processing units, in addition to FP32 (single precision). As a result, FP64/FP32/FP16 instructions can coexist providing different performance levels, e.g., the ratio of FP64:FP32:FP16 throughput is 1:2:4 in the P100 series of Tesla GPUs. Before the introduction of these processors, mixing FP64 and FP32 instructions had limited performance impact because mixed precision math units were rare.

The research team recently published their breakthrough result on this technical challenge.

  • PI Saurabh Bagchi said, “This solution will allow the long-running codes on GPUs, those that do a significant amount of floating-point processing, to use just the right precision of the variables to maximize speedup or alternately minimize energy consumption, and bounding the drop in quality of the output.”
  • Laguna said, “This automated approach selects precisions for floating-point arithmetic operations that both improve performance andsatisfy accuracy requirements, without needing the programmer to do the laborious tuning of the precisions.” Purdue students, Pradeep Kotipalli and Ranvijay Singh (now at NVIDIA), and Purdue Research Scientist, Dr. Paul Wood (now at Johns Hopkins University), did a significant part of the technical design and development.

No prior work has support for parallel codes found in GPU programming models as they relied on serial instrumentation or profiling support that does not span the GPU programming and execution model, such as CPU-to-GPU calls. Next, accuracy-centric approaches of the prior work lacked a performance model and simply assumed that minimal precision results in the fastest running time. For example in [figure 1], the objective function was to maximize the number of FP32 variables.

In practice, mixing precision requires casting to satisfy the mathematical operation with the most precise operand. However, casting is an expensive operation (e.g., twice as expensive as FP64 operations in the authors’ target GPU architectures) and therefore reducing precisions may actually increase the execution time. Further, when there are parallel resource pools for FP64 and FP32 (as in several GPU architectures), mixing precision allows for an additional opportunity for parallelism, which prior work ignored. Finally, approaches that solely used online runtime information [2] suffered from very large search space problems. Consider that there are nfloating point variables that can be tuned and there are 3 precision levels supported by the architecture; then the search space is 3n. In large production-level scientific applications, ncan be very large (hundreds), making this method impractical.

The authors presented AMPT-GA, pronounced “Amp-ed GA”, the first mixed precision optimization system that solves an accuracy-constrained performance maximization problem for GPU programs. AMPT-GA seeks to select the set of precision levels for floating point variables at an application level that maximizes the performance while keeping the introduced error below a tolerable threshold, as defined by the application user. The complete set of assignments of each floating point variable to a precision level is called the Precision Vector (PV) and the optimal PV is the final output of AMPT-GA.

The key insight behind AMPT-GA is that the dynamic search technique through the large space of possible precision vectors is aided by static analysis.Their static analysis identifies groups of variables whose precisions should preferentially be changed together to reduce the performance impact of the precision change of any variable through casting. Such information speeds up the online search through the large search space. Further, considering the irregular nature of the search space, AMPT-GA uses a Genetic Algorithm for the search, which helps avoid local minima that prior approaches such as [2, 3] have a tendency to fall into.

Figure 1. Overview of AMPT-GA. The inputs to AMPT-GA, shaded in green, are the application, the GPGPU properties (such as FP32 vs. FP64 instruction performance, casting cost), the error metric of interest and the corresponding error threshold, a test input, and the fuzzing process to generate similar inputs. The static path (in yellow) creates a performance and dependency model and the dynamic path (in blue) finds the Precision Vector (PV) to minimize the execution time of the application while staying under the error threshold. The blue optimization boxes are part of an iterative optimization process that run multiple generations of a Genetic Algorithm to identify the output PV. The purple boxes are measurements executed on the target GPGPU platform. During the search, each PV is evaluated through actual execution on the GPGPU unless filtered by our execution filter. The final PV for the test input is then measured against a region of similar inputs to determine its generality.

The ISC paper, GPUMixer, presents the first static analysis to identify regions of code in a GPU kernel that are guaranteed to improve performance when mixed-precision is used. While previous approaches can identify mixed-precision code segments that improve performance, they are usually dynamic in nature and require running the application many times. This approach, however, identifies these regions statically, which avoids running the application. GPUMixer also presents the first shadow computation analysis for GPUs, a method that allows estimating the error that is introduced when the precision of specific arithmetic operations is downgraded.

The team has shown the power of AMPT-GA and GPUMixer on several real GPU programs, including LULESH, a DOE’s proxy application that approximates hydrodynamics equations discretely and which has been widely used in the procurement of DOE’s next-generation supercomputers and on DOE’s Co-Design Centers. The evaluation on LULESH, the CoMD proxy application, and on several Rodinia GPU benchmarks demonstrates the practical utility of AMPT-GA and GPUMixer on finding mixed-precision configurations that improve performance and maintain an acceptable level of error.

Looking forward the work is continuing to improve the design of these methods so that even lower precision can be leveraged (e.g., half precision or lower) and better mixed-precision combinations can be found more efficiently.

Link to paper (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications): http://lagunaresearch.org/docs/isc-2019.pdf

Authors: Ignacio Laguna (LLNL), Paul C. Wood (Johns Hopkins Applied Physics Lab), Ranvijay Singh (Nvidia), and Saurabh Bagch (Purdue University)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (Lawrence Livermore National Security, LLC – LLNL-MI-774142).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Building a Solid IA for Your AI

The journey to high performance precision medicine starts with designing and deploying a solid Information Architecture that addresses the spectrum of challenges from data and applications that need to be managed and orchestrated together to empower workloads from analytics to AI. Read more…

HPC Perspectives with Dr. Seid Koric

September 12, 2019

Brendan McGinty, director of Industry for the National Center for Supercomputing Applications (NCSA), University of Illinois at Urbana-Champaign, kicks off the first in a series of pieces profiling leaders in high performance computing (HPC), writing for the... Read more…

By Brendan McGinty

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This