LLNL, Purdue Researchers Harness GPU Mixed Precision for Accuracy-Performance Tradeoff

August 5, 2019

Editor’s Note: Effective use of mixed precision calculations is becoming more important and common in scientific computing, not least because of the growing use of AI techniques in which FP64 calculations are sometimes less needed and computationally expensive. In this brief article, researchers from Lawrence Livermore National Laboratory discuss their recent breakthrough development of an auto-tuning technique for selecting optimal mixed precision calculation modes using GPUs.

Computational scientists have long relied on high-precision arithmetic to accurately solve a wide range of problems, from modeling nuclear reactors to predicting supernova physics to measuring the forces within an atomic nucleus. However, changes to hardware, spurred by the demand for more computing capability and growth in machine learning, have us rethinking the balance between the number of digits needed to perform a given calculation and computational efficiency.

Researchers from Purdue University, Prof. Saurabh Bagchi, and the U.S. Department of Energy’s Lawrence Livermore National Laboratory, Dr. Ignacio Laguna, have taken an essential step toward enabling mixed precision calculations on GPUs through novel automatic tuning methods that can be applied to real-world CUDA programs. For portions of a calculation that do not require full 64-bit double-precision arithmetic, lower precision alternatives may provide enough accuracy. The tradeoff could enable us to solve complex problems faster and at lower energy budgets, thus enabling scientific discoveries that would otherwise remain hidden away from us.

The work (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications) recently won the best paper award at the 33rd ISC High Performance conference held June 16-20, 2019, in Frankfurt and which brought together over 3,500 researchers and commercial users. Another result from the work appeared at the 33rd International Conference on Supercomputing (ICS), held June 26-28, in Phoenix, Ariz.

The challenge that the scientific community has been trying to solve is how do we reduce the precision of the variables in a systematic manner—only those variables that would not degrade the quality of the overall result too much and their precision is reduced to the right level. Several recent changes in the GPU space have created new opportunities for mixed precision arithmetic. GPU manufacturers have begun to include native FP64 (double precision) and FP16 (half precision) arithmetic units inside of their processing units, in addition to FP32 (single precision). As a result, FP64/FP32/FP16 instructions can coexist providing different performance levels, e.g., the ratio of FP64:FP32:FP16 throughput is 1:2:4 in the P100 series of Tesla GPUs. Before the introduction of these processors, mixing FP64 and FP32 instructions had limited performance impact because mixed precision math units were rare.

The research team recently published their breakthrough result on this technical challenge.

  • PI Saurabh Bagchi said, “This solution will allow the long-running codes on GPUs, those that do a significant amount of floating-point processing, to use just the right precision of the variables to maximize speedup or alternately minimize energy consumption, and bounding the drop in quality of the output.”
  • Laguna said, “This automated approach selects precisions for floating-point arithmetic operations that both improve performance andsatisfy accuracy requirements, without needing the programmer to do the laborious tuning of the precisions.” Purdue students, Pradeep Kotipalli and Ranvijay Singh (now at NVIDIA), and Purdue Research Scientist, Dr. Paul Wood (now at Johns Hopkins University), did a significant part of the technical design and development.

No prior work has support for parallel codes found in GPU programming models as they relied on serial instrumentation or profiling support that does not span the GPU programming and execution model, such as CPU-to-GPU calls. Next, accuracy-centric approaches of the prior work lacked a performance model and simply assumed that minimal precision results in the fastest running time. For example in [figure 1], the objective function was to maximize the number of FP32 variables.

In practice, mixing precision requires casting to satisfy the mathematical operation with the most precise operand. However, casting is an expensive operation (e.g., twice as expensive as FP64 operations in the authors’ target GPU architectures) and therefore reducing precisions may actually increase the execution time. Further, when there are parallel resource pools for FP64 and FP32 (as in several GPU architectures), mixing precision allows for an additional opportunity for parallelism, which prior work ignored. Finally, approaches that solely used online runtime information [2] suffered from very large search space problems. Consider that there are nfloating point variables that can be tuned and there are 3 precision levels supported by the architecture; then the search space is 3n. In large production-level scientific applications, ncan be very large (hundreds), making this method impractical.

The authors presented AMPT-GA, pronounced “Amp-ed GA”, the first mixed precision optimization system that solves an accuracy-constrained performance maximization problem for GPU programs. AMPT-GA seeks to select the set of precision levels for floating point variables at an application level that maximizes the performance while keeping the introduced error below a tolerable threshold, as defined by the application user. The complete set of assignments of each floating point variable to a precision level is called the Precision Vector (PV) and the optimal PV is the final output of AMPT-GA.

The key insight behind AMPT-GA is that the dynamic search technique through the large space of possible precision vectors is aided by static analysis.Their static analysis identifies groups of variables whose precisions should preferentially be changed together to reduce the performance impact of the precision change of any variable through casting. Such information speeds up the online search through the large search space. Further, considering the irregular nature of the search space, AMPT-GA uses a Genetic Algorithm for the search, which helps avoid local minima that prior approaches such as [2, 3] have a tendency to fall into.

Figure 1. Overview of AMPT-GA. The inputs to AMPT-GA, shaded in green, are the application, the GPGPU properties (such as FP32 vs. FP64 instruction performance, casting cost), the error metric of interest and the corresponding error threshold, a test input, and the fuzzing process to generate similar inputs. The static path (in yellow) creates a performance and dependency model and the dynamic path (in blue) finds the Precision Vector (PV) to minimize the execution time of the application while staying under the error threshold. The blue optimization boxes are part of an iterative optimization process that run multiple generations of a Genetic Algorithm to identify the output PV. The purple boxes are measurements executed on the target GPGPU platform. During the search, each PV is evaluated through actual execution on the GPGPU unless filtered by our execution filter. The final PV for the test input is then measured against a region of similar inputs to determine its generality.

The ISC paper, GPUMixer, presents the first static analysis to identify regions of code in a GPU kernel that are guaranteed to improve performance when mixed-precision is used. While previous approaches can identify mixed-precision code segments that improve performance, they are usually dynamic in nature and require running the application many times. This approach, however, identifies these regions statically, which avoids running the application. GPUMixer also presents the first shadow computation analysis for GPUs, a method that allows estimating the error that is introduced when the precision of specific arithmetic operations is downgraded.

The team has shown the power of AMPT-GA and GPUMixer on several real GPU programs, including LULESH, a DOE’s proxy application that approximates hydrodynamics equations discretely and which has been widely used in the procurement of DOE’s next-generation supercomputers and on DOE’s Co-Design Centers. The evaluation on LULESH, the CoMD proxy application, and on several Rodinia GPU benchmarks demonstrates the practical utility of AMPT-GA and GPUMixer on finding mixed-precision configurations that improve performance and maintain an acceptable level of error.

Looking forward the work is continuing to improve the design of these methods so that even lower precision can be leveraged (e.g., half precision or lower) and better mixed-precision combinations can be found more efficiently.

Link to paper (GPUMixer: Performance-Driven Floating-Point Tuning for GPU Scientific Applications): http://lagunaresearch.org/docs/isc-2019.pdf

Authors: Ignacio Laguna (LLNL), Paul C. Wood (Johns Hopkins Applied Physics Lab), Ranvijay Singh (Nvidia), and Saurabh Bagch (Purdue University)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 (Lawrence Livermore National Security, LLC – LLNL-MI-774142).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

What’s New in Computing vs. COVID-19: White House Initiative, Frontera, RIKEN & More

March 25, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its scope and operation in a briefing led by Undersecretary of Ener Read more…

By John Russell

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel’s Neuromorphic Chip Scales Up (and It Smells)

March 18, 2020

Neuromorphic chips attempt to directly mimic the behavior of the human brain. Intel, which introduced its Loihi neuromorphic chip in 2017, has just announced that Loihi has been scaled up into a system that simulates over 100 million neurons. Furthermore, it announced that the chip smells. Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This