AMD Launches Epyc Rome, First 7nm CPU

By Tiffany Trader

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm process technology. The new AMD Epyc 7002 series is a follow-on to the first-gen 14nm Epyc Naples CPUs, released in June 2017. The announcement marks a significant competitive step for AMD in its struggle to take market share from segment leader Intel. Intel meanwhile is preparing its 14nm Cooper Lake server chip line for launch in the first half of 2020 with 10nm Ice Lake to follow.

At the event held for press, analysts and partners, AMD emphasized its process leadership, a performance advantage over the Intel Cascade Lake line and put a sharp focus on security, which has been on a continuous news cycle since the Spectre/Meltdown vulnerabilities came to light over a year-and-a-half ago.

The 7002 processors feature up to 64 “Zen 2” cores per SOC, deliver up to 23 percent more instructions per clock (IPC) per core on server workloads and up to four times more L3 cache compared to the previous generation, said AMD. The top bin part (the Epyc 7742, 225-240 watt TDP) provides 3.48 teraflops of peak double-precision performance running at max boost frequency of 3.4 GHz — almost 7 teraflops in a dual-socket server. At its base frequency of 2.25 GHz, the 7742 tops out as a theoretical 2.3 double-precision teraflops.

The second-gen Epyc SoCs are built as nine-die packages with eight 7nm complex core die (CCD) chiplets — with up to eight cores each — surrounding a 14nm I/O die, connected via AMD’s second-gen Infinity fabric. AMD says the next-generation Infinity architecture gives customers access to the most I/O and memory bandwidth in its class, with 128 lanes of PCIe generation 4 (or more in custom builds). The upgraded fabric nearly doubles throughput, pushing 18GT/s socket-to-socket compared with 10.7 GT/s of throughput in the first generation chips.

Moving from traditional monolithic to a hybrid multi-die architecture. (Source: AMD)

“Adoption of our new leadership server processors is accelerating with multiple new enterprise, cloud and HPC customers choosing Epyc processors to meet their most demanding server computing needs,” said AMD CEO Lisa Su, noting that there are more than 60 Eypc-based platforms in the market today. The company also reported that its second gen server processors hold 80 records, 15 of them in HPC, while delivering an estimated 25-50 percent lower TCO than competitive offerings.

In terms of security protection, the new chips are said to deliver “hardened at the core” features based on a silicon-embedded security subsystem and advanced features such as Secure Memory Encryption and Secure Encrypted Virtualization.

Market watcher Patrick Moorhead, Moor Insights & Strategy president and principal analyst, said the launch was a bigger leap forward than he had expected. “AMD improved most of its Gen 1 shortcomings like single-thread performance (+15 percent) and core scaling and added new RAS (uncorrectable DRAM error entry) and security (Secure Memory Encryption, Secure Encrypted Virtualization, 509 keys) capabilities, in addition to substantial, multi-core performance gains,” he shared.

Single-Sockets and Simplified SKU Stacks

2nd Gen Epyc 2P product stack for dual-socket servers (click to enlarge)

In a pre-briefing held the evening before the launch, Scott Aylor, AMD’s datacenter solutions group corporate VP/GM, underscored the momentum of the company’s single-socket strategy begun with the launch of first-gen Epyc two years ago. “With the current Epyc second generation technology, we will have the ability to address the entire two-socket market with our single-socket offering today for the first time ever,” said Aylor. “In our first generation, a fantastic start, we addressed about 50 percent of the addressable market with single-socket technology; now we’ve totally changed the trajectory of that with the second generation.”

Aylor also clarified that while there are dedicated dual- and single-socket SKUs, every Epyc first generation and second generation processor can be made single socket. “We choose to make some of those only single socket to drive our single socket agenda in the market,” he said.

2nd Gen Epyc 1P product stack for single-socket servers (click to enlarge)

AMD also emphasized the simplicity of its product stack. “We have a very simple, straightforward stack. Customers can choose the level of performance they want, the number of cores that they need for their application or workload, and procure that. No compromises. Because with the Epyc stack, all features are included in every Epyc processor. Every customer gets it all,” said AMD SVP Forrest Norrod during the launch.

Highlights of the nearly two-and-a-half hour event included HPE and Lenovo announcing the immediate availability of new platforms, with Lenovo being a major go-to-market partner to execute AMD’s single-socket strategy. Dell EMC, which launched single-socket first-gen Epyc-based PowerEdge servers last year, said it is planning to debut Rome platforms in the fall.

See endnotes for additional details.

HPC partner Cray also showed up to support the launch. Cray CEO Pete Ungaro reviewed the company’s big wins with AMD at Oak Ridge (Frontier) and at NERSC (Perlmutter) and announced that the U.S. Air Force Weather Agency will use a Cray Shasta system with second-gen Epycs to provide terrestrial and space weather information to the the Air Force and the U.S. Army.

AMD highlighted a number of HPC benchmarks in which it said its 64-core Epyc 7742 is outperforming Intel’s Xeon Platinum 28-core 8280 chip, noting up to 2x better performance in computational fluid dynamics and up to 72 percent higher performance for structural analysis (see slide above right, and endnotes for details). Further, in comparisons with Intel’s Xeon Platinum 8280L, AMD said Epyc 7742 achieved 97 percent higher performance in SpecRate 2017 integer (peak) workloads (source: link1, link2) and offered 88 percent faster SpecRate 2017 (peak) floating point performance (source: link1, link2).

Twitter Senior Director of Engineering Jen Frazer joined AMD’s Su on stage to report that the social media company is using the second-gen AMD Epyc to improve the TCO of its datacenters by 25 percent. Su’s admission that she is “a huge fan of Twitter” drew a collective chuckle from the audience, probably due to Su’s denial on Twitter the day before of rumors that she might join IBM as CEO.

Speaking of speculation, the buzz about Google potentially being a major launch partner panned out. Two hours into the proceedings, Su came back to the stage to welcome one final special guest. Bart Sano, Google’s vice president of platforms, revealed the web giant has deployed the 2nd gen AMD Epyc processors in its internal infrastructure production datacenter environment, marking the first Rome deployment of this kind. Sano also disclosed that by year end Google will support new general-purpose machines powered by the new chips on the Google Cloud Compute Engine.

The other big hyperscale partner at this launch was Microsoft Azure. Azure HBv2 instances, powered by Rome, are available today in preview and will support up to 36,000 cores for MPI workloads in a single virtual machine scale set, and up to 80,000 cores for larger customers, according to Evan Burness, principal program manager, Azure HPC.

Azure Corporate Vice President Girish Bablani reported that HBv2 VMs featuring 120 second-gen Epyc CPUs are demonstrating performance gains of over 100 percent on HPC workloads like fluid dynamics and automotive crash test analysis. HBv2 also marks the cloud’s first deployment of 200 Gigabit InfiniBand. Full availability for the upgraded instances is scheduled for Q4.


Benchmarking details for “Leadership Performance” slide

• Based on AMD internal testing of ESI VPS 2018.0, NEON4m benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary.
• Based on AMD internal testing of Altair RADIOSS 2018, T10M benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary.
• Based on AMD internal testing of LSTC LS-DYNA R9.3.0, neon benchmark, as of July 17, 2019 of a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary.
• Based on AMD internal testing of Siemens PLM STAR-CCM+ 14.02.009, kcs_with_physics benchmark, as of July 17, 2019 using a 2P EPYC 7742 powered reference server versus a 2P Xeon Platinum 8280 powered server. Results may vary.
• Based on AMD internal testing of ANSYS FLUENT 19.1, lm6000_16m benchmark, as of July 17, 2019 of a 2P EPYC 7742 powered reference server versus a 2P Intel Xeon Platinum 8280 powered server. Results may vary.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire