Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

By Tiffany Trader

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanford, Calif., this week, Ayar Labs will show results of the work it’s been doing with DARPA and Intel on an FPGA chiplet integration platform targeting radar applications.

Ayar Labs, which has offices in Emeryville and Santa Clara, Calif., has just taped out its 11th generation “AL11” electrical-to-optical I/O chiplet, the basis for its commercial product, called TeraPHY, which the company says will enable optical I/O bandwidth capability in excess of a Terabit/sec at 10X lower power than today’s Gigabit/sec I/O solutions.

TeraPHY will be integrated with other silicon technology partners’ designs into multi-chip module (MCM) computing products. In a stroke of good timing for Ayar Labs–which expects early system deployments and prototypes in “reasonable volume” in 2020–there’s something of an MCM/chiplet revolution afoot. Chipmakers, such as Intel and AMD, are turning to the modular packaging approach to sidestep Moore’s law (or maybe Gordon Moore actually foresaw this).

Ayar Labs has been working closely with Intel’s Programmable Solutions Group as part of the DARPA CHIPS (Common Heterogeneous Integration and IP Reuse Strategies) project. At Hot Chips this week, Ayar Labs will be showing its 10th gen chiplet installed in an Intel FPGA package with an Intel Stratix 10 die; and it will also announce its support for the Advanced Interface Bus (AIB) protocol.

ERI Summit (July 16, 2019)

Intel’s Senior Principal Engineer Sergey Shumarayev previewed the new technology at DARPA’s ERI Summit last month. The Ayar Labs chiplet connects to the Intel Stratix 10 FPGA die via the AIB interface using Intel’s EMIB packaging. The Jariet Technologies’ millimeter wave chiplet gets information in through RF, passes that information to the FPGA for pre-processing and that gets shipped out optically via the Ayar Labs chiplet.

The University of Michigan chiplet functions as an AI accelerator. Ayar Labs is not directly involved in the University of Michigan research project, but Ayar Labs Chief Scientist and Co-Founder Mark Wade noted the AI chiplet illustrates the versatility of this type of integration.

“This chiplet package ecosystem allows someone to put in an AI accelerator chip and interface to the FPGA, and then also on the other side interface to our high performance optical IO chip; there’s a kind of transformative joint solution coming together that can be enabled by this emerging ecosystem,” said Wade, who will be presenting at Hot Chips on Tuesday.

Ayar Labs has been working with Intel to evolve AIB — the wide, parallel PHY-level interface that Intel open sourced to help spur chiplet adoption. Freely available on GitHub, AIB is being driven as an open industry standard for enabling low-latency, power-efficient direct chiplet-to-chiplet communication.

Ayar Labs also continues to work on support for serial interfaces, like SerDes — an approach of course that has a lot of momentum behind it. Wade said Ayar’s roadmap now includes a provision for both wide parallel implementations, such as AIB, as well as serial implementations, but he says they are getting the most traction with the wide parallel approach.

Ayar Labs CEO Charlie Wuischpard, who joined the company in November 2018, after heading HPC at Intel for a number of years, told HPCwire that while the FPGA solution being demoed this week is emerging as an Intel technology, the opportunity extends beyond working with a single vendor.

“The fact that the government is standardizing on an electrical interface makes this really suitable for anybody else to pick up and run with,” he said. “We’ve been getting a ton of interest from across the industry as there’s this greater recognition that optical I/O creates whole new sets of opportunities.

Example of a possible heterogeneous system in package (SiP) that combines sensors, proprietary ASIC, FPGA, CPU, Memory, and I/O using AIB as the chiplet interface. (Source: Intel Corp.)

“One of the really interesting things about our technology is not just the innovative optical chiplet that goes in the package, but once you’re relieved of the constraints that are currently in place in system designs around the power and packaging and cooling to drive the massive signals, and that’s the bandwidth over copper, then you can create brand new system architectures,” said Wuischpard.

The FPGA demonstration targets phased array radar applications, which is an important market target for Ayar Labs along with 5G, but Hugo Saleh, vice president of marketing and business development, who also made the jump from Intel, told HPCwire they anticipate another killer app: high-end HPC and AI. Picture, for example, an Nvidia DGX-2 type-box, but instead of the NVLinks, there would be 16 GPUs or AI chips connected by optical interfaces, and then multiple boxes could be connected using optical instead of switched fabrics.

Potential use cases extend to any server with a PCIe card in it. “We’ve got a prototype design where essentially you could take a GPU or an FPGA or an ASIC and build a system the size of a whole rack or maybe multiple racks all optically connected that far expands beyond the 16 GPUs currently supported [in the DGX2],” said Saleh.

The glueless, point-to-point interconnect approach applies for standard two-socket servers, he added. Ayar Labs foresees using optical to create supernodes where every element of the system can talk to every other element of the system, versus going up through a switch.

“We’ve reviewed this with several of the large hyperscale providers and the day we have this capability, they want to start testing it,” said Wuischpard. “We have to be able to first produce our single instance of optically connected FPGA as a first step, but we very rapidly want to move to these new system designs that use optical I/O in a new way.”

AI applications and graph analytics are clamoring for this kind of memory semantic type architecture, and government agencies are looking to leverage the technology for advanced threat intelligence, for identifying patterns in vast and disparate data sets and for tracking objects—like airplanes and drones-in real-time.

Ayar Labs has in its pipeline a graph analytics design win that is using four Ayar Labs chiplets per socket with each one of those chiplets putting out 1.3 Terabits per second of data. “That’s an aggregate of over 5 Terabits per second out of package and the only way they can do this is with optical,” Saleh stated.

In the lab: co-packaged Stratix 10 FPGA and TeraPHY chiplets with fiber connected (courtesy: Ayar Labs)

Ayar Labs works closely with GlobalFoundries, a trusted foundry for the U.S. government. The TeraPHY chips are being manufactured using GloFo’s 45 nanometer RF SOI (Radio Frequency Silicon on Insulator) process, currently at its East Fishkill, NY, facility.

Each optoelectronic chip spans an area of approximately five by eight millimeters. Wade said the sizing takes into account how the chips line up with the Intel FPGA. The Intel chip is a full reticle FPGA die, about 25 millimeters on one edge, and the entire east-west side of that edge has the AIB interface on it. That allows up to three Ayar dies to abut each of those edges, to connect up to the AIB interface and escape all that bandwidth.

“This chiplet kind of revolution that is happening right now really allows a mix and match type of configurability that was not there before,” said Wade. “So it allows you to essentially customize at the package level a chip solution that can be targeted to specific applications. In some cases, you might use an FPGA that doesn’t need every slot populated with an optical I/O chip. So maybe you have a memory chip, maybe you have an AI accelerator chip, maybe you have one of our chiplets. And the beauty is you can mix and match all these things together in a heterogeneous way that previously really was not possible. So this emergence of the chiplet ecosystem is really a big development enabling our type of solution.”

Ayar Labs was founded in 2015 by a group of researchers from MIT, UC Berkeley, and CU Boulder who were part of a 10-year research collaboration funded by DARPA. The company has gone through several funding rounds with an investor roster that includes Playground Global, Intel Capital, Global Foundries, the Founders Fund, Silicon Valley Bank and others. It has also been the recipient of several recent DARPA grants and is involved in the CHIPS and PIPES projects.

Feature image caption: a cameo shot in the lab of Ayar Labs’ TeraPHY chiplet co-packaged with a Stratix 10 FPGA (courtesy: Ayar Labs)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about how AI can benefit their business operations and products. Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman Institute for Advanced Science and Technology at the Universi Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Gordon Bell Special Prize for High Performance Computing-Ba Read more…

By Oliver Peckham

AWS Solution Channel

Introducing AWS ParallelCluster as an Intel Select Solution

High performance computing (HPC) system owners can spend weeks or months researching, procuring, and assembling components to build HPC clusters to run their workloads. Understanding and managing the complexities of compute, storage, networking, and software requirements can be confusing and time-consuming, slowing innovation and results. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

The Present and Future of AI: A Discussion with HPC Visionary Dr. Eng Lim Goh

November 27, 2020

As HPE’s chief technology officer for artificial intelligence, Dr. Eng Lim Goh devotes much of his time talking and consulting with enterprise customers about Read more…

By Todd R. Weiss

SC20 Panel – OK, You Hate Storage Tiering. What’s Next Then?

November 25, 2020

Tiering in HPC storage has a bad rep. No one likes it. It complicates things and slows I/O. At least one storage technology newcomer – VAST Data – advocates dumping the whole idea. One large-scale user, NERSC storage architect Glenn Lockwood sort of agrees. The challenge, of course, is that tiering... Read more…

By John Russell

Exscalate4CoV Runs 70 Billion-Molecule Coronavirus Simulation

November 25, 2020

The winds of the pandemic are changing – for better and for worse. Three viable vaccines now teeter on the brink of regulatory approval, which will pave the way for broad distribution by April or May. But until then, COVID-19 cases are skyrocketing across the U.S. and Europe... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Gordon Bell Prize Winner Breaks Ground in AI-Infused Ab Initio Simulation

November 19, 2020

The race to blend deep learning and first-principle simulation to speed up solutions and scale up problems tackled is one of the most exciting research areas in computational science today. This year’s ACM Gordon Bell Prize winner announced today at SC20 makes significant progress in that direction. Read more…

By John Russell

SC20 Keynote: Climate, Exascale & the Ultimate Answer

November 19, 2020

SC20’s keynote was delivered by renowned meteorologist and climatologist Bjorn Stevens, a director at the Max Planck Institute for Meteorology since 2008 and a professor at the University of Hamburg. In his keynote, Stevens traced the history of climate science from its earliest days through... Read more…

By Oliver Peckham

EuroHPC Exec. Dir. Talks Procurement, EPI, and Europe’s Efforts to Control its HPC Destiny

November 19, 2020

While much of the HPC community’s attention is fixed on SC20’s flood of news and new product announcements, Anders Dam Jensen, the newly-minted executive di Read more…

By Steve Conway

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This