At Long Last, Supercomputing Helps to Map the Poles

By Oliver Peckham

August 22, 2019

“For years,” Paul Morin wrote[*], “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Now, after a decade of painstaking work, the time for apologies is over. A major collaboration between universities, the U.S. government and a software company has produced an unprecedentedly accurate map of the poles – and it was made possible by supercomputing.

Paul Morin. Image courtesy of the University of Minnesota.

Morin is the founder and director of the Polar Geospatial Center at the University of Minnesota, where he and dozens of other researchers help the National Science Foundation (NSF) map the Earth’s poles. Morin also liaises between the NSF and the National Geospatial-Intelligence Agency (NGA) and serves on the National Academy of Sciences’ Standing Committee on Antarctic Geographic Information. 

In short: if you’re interested in polar mapping, he’s your guy.

“It’s to serve places like this,” Morin said in a recent NSF-hosted webinar, pointing out a field camp in the dry valleys of Antarctica. “When we’re out there working, we’re sleeping in tents. […] As we were working, we didn’t have access to the kind of resources we have now. And so […] we flew around in helicopters, we had differential GPS, and we were geo-referencing air photography that was collected often in the 80’s, 90’s or the 00’s.”

Morin’s point is well-taken: for those working on or over the poles – not just researchers, but National Guard and Air Force servicemen as well – the accuracy of polar maps is a day-to-day, functional concern. (“I mean, this is the way that we get to work in the morning,” Morin said.)

The scope of the project was staggering. Antarctica is 15 million square miles – 50 percent larger than the contiguous U.S. “We can use all the standards superlatives – the highest, the driest, the coldest – but from my standpoint,” he said, “it’s just big.” But Antarctica, of course, is only one part of the equation. On the other end (quite literally): the Arctic, which is twice the size of the contiguous U.S.

Luckily, Earth-observing satellites tend to be in a polar orbit, constantly taking images of  the poles. The problem, then, became wrangling what Morin calls an “incredible fire hose of imagery” from NASA, the European Space Agency and commercial satellite operators. The imagery that the researchers were able to request allowed for pinpoint accuracy. “If you were to look at the ground in the valleys,” Morin said, “and if you were to put a single oak leaf in a specific location, you could detect the chlorophyll in that oak leaf in a 1.8 meter square pixel.”

But a single, detailed map wasn’t enough.

“You […] just don’t get the repeat that science would need, because the Earth’s surface is always changing,” Morin said of older surveying methods. “All these things – we want to be able to measure and see what the difference is.”

Then, five years ago, the U.S. gained the chairmanship of the Arctic Council and announced plans to create a robust elevation map of the Arctic. Morin and his colleagues realized that this was their opportunity to create an evolving topographic dataset for polar regions. The following year, President Obama announced a project with the NSF and the NGA to create that dataset for Alaska within one year and the Arctic within two.

With NGA’s satellite imagery contracts now at their fingertips, the newly formed team needed tools to process that massive amount of data. They turned to Ohio State University (OSU) and the National Center for Supercomputing Applications (NCSA) at the University of Illinois. OSU provided software that allowed the team to feed stereo imagery into an HPC system and receive a digital elevation model (DEM) with very little human intervention. The NCSA, of course, provided the firepower: Blue Waters, a hybrid Cray supercomputer that delivers roughly 13 petaflops, over 1.5 petabytes of memory and about 26 petabytes of storage. Over time, the team received allocations on Stampede2 and Frontier as well.

REMA’s coverage area. Image courtesy of the University of Minnesota.

They got to work. The team produced a five-meter resolution elevation model of Alaska, then refined it to two meters. Then the Arctic: 12 percent of the Earth mapped at a two-meter resolution. Then Antarctica – another 8 percent. They produced REMA (the Reference Elevation Model of Antarctica) and, later, ArcticDEM, a tool for extracting those two-meter Arctic DEMs from Blue Waters.

Morin walked through the particulars of how granular these maps could be – individual trees being logged, ice melt, lava flows. “We now have better topography for the ice on Earth than we do for the land on Earth,” Morin said. “There really isn’t anywhere else on the planet that we just have this much repeat.”

The project was a success, and NGA and NSF have extended their collaboration and their time on Blue Waters – this time, with the aim to extend the polar mapping project to the entire surface of the Earth.

“When we began this, we just didn’t have HPC experience,” said Morin. “Last time I touched HPC before this project, the computer was a Cray-2. We needed software like Swift and Parsl for sub-scheduling – we’re doing hundreds of thousands of jobs, huge networking and automation. The community just isn’t used to this – you know, the next version of the poles is probably two petabytes! […] These projects are too big for any one agency – we’re talking public, private, multiple agencies, civilian defense… we have to bring everybody to bear on projects this large.”

To Morin, though, this is clearly still just the beginning. Morin cites a project (“Planet”) that is launching hundreds of shoebox-sized satellites for geospatial mapping. “There’s so much data coming through there that we just can’t think of how we’re going to process it even now,” he said. Of course, he does have some ideas: he recalls another project (“Iceberg”) using machine learning algorithms to detect permafrost in the Arctic.

“So,” he says excitedly, “if we can keep throwing imagery at this…”

[*] Paul Morin’s talk, “The use of NSF HPC for the Production of the Earth’s Topography,” was held last week as part of the NSF Office of Advanced Cyberinfrastructure’s Cyberinfrastructure Webinar Series. To read more about the talk, click here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This