At Long Last, Supercomputing Helps to Map the Poles

By Oliver Peckham

August 22, 2019

“For years,” Paul Morin wrote[*], “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Now, after a decade of painstaking work, the time for apologies is over. A major collaboration between universities, the U.S. government and a software company has produced an unprecedentedly accurate map of the poles – and it was made possible by supercomputing.

Paul Morin. Image courtesy of the University of Minnesota.

Morin is the founder and director of the Polar Geospatial Center at the University of Minnesota, where he and dozens of other researchers help the National Science Foundation (NSF) map the Earth’s poles. Morin also liaises between the NSF and the National Geospatial-Intelligence Agency (NGA) and serves on the National Academy of Sciences’ Standing Committee on Antarctic Geographic Information. 

In short: if you’re interested in polar mapping, he’s your guy.

“It’s to serve places like this,” Morin said in a recent NSF-hosted webinar, pointing out a field camp in the dry valleys of Antarctica. “When we’re out there working, we’re sleeping in tents. […] As we were working, we didn’t have access to the kind of resources we have now. And so […] we flew around in helicopters, we had differential GPS, and we were geo-referencing air photography that was collected often in the 80’s, 90’s or the 00’s.”

Morin’s point is well-taken: for those working on or over the poles – not just researchers, but National Guard and Air Force servicemen as well – the accuracy of polar maps is a day-to-day, functional concern. (“I mean, this is the way that we get to work in the morning,” Morin said.)

The scope of the project was staggering. Antarctica is 15 million square miles – 50 percent larger than the contiguous U.S. “We can use all the standards superlatives – the highest, the driest, the coldest – but from my standpoint,” he said, “it’s just big.” But Antarctica, of course, is only one part of the equation. On the other end (quite literally): the Arctic, which is twice the size of the contiguous U.S.

Luckily, Earth-observing satellites tend to be in a polar orbit, constantly taking images of  the poles. The problem, then, became wrangling what Morin calls an “incredible fire hose of imagery” from NASA, the European Space Agency and commercial satellite operators. The imagery that the researchers were able to request allowed for pinpoint accuracy. “If you were to look at the ground in the valleys,” Morin said, “and if you were to put a single oak leaf in a specific location, you could detect the chlorophyll in that oak leaf in a 1.8 meter square pixel.”

But a single, detailed map wasn’t enough.

“You […] just don’t get the repeat that science would need, because the Earth’s surface is always changing,” Morin said of older surveying methods. “All these things – we want to be able to measure and see what the difference is.”

Then, five years ago, the U.S. gained the chairmanship of the Arctic Council and announced plans to create a robust elevation map of the Arctic. Morin and his colleagues realized that this was their opportunity to create an evolving topographic dataset for polar regions. The following year, President Obama announced a project with the NSF and the NGA to create that dataset for Alaska within one year and the Arctic within two.

With NGA’s satellite imagery contracts now at their fingertips, the newly formed team needed tools to process that massive amount of data. They turned to Ohio State University (OSU) and the National Center for Supercomputing Applications (NCSA) at the University of Illinois. OSU provided software that allowed the team to feed stereo imagery into an HPC system and receive a digital elevation model (DEM) with very little human intervention. The NCSA, of course, provided the firepower: Blue Waters, a hybrid Cray supercomputer that delivers roughly 13 petaflops, over 1.5 petabytes of memory and about 26 petabytes of storage. Over time, the team received allocations on Stampede2 and Frontier as well.

REMA’s coverage area. Image courtesy of the University of Minnesota.

They got to work. The team produced a five-meter resolution elevation model of Alaska, then refined it to two meters. Then the Arctic: 12 percent of the Earth mapped at a two-meter resolution. Then Antarctica – another 8 percent. They produced REMA (the Reference Elevation Model of Antarctica) and, later, ArcticDEM, a tool for extracting those two-meter Arctic DEMs from Blue Waters.

Morin walked through the particulars of how granular these maps could be – individual trees being logged, ice melt, lava flows. “We now have better topography for the ice on Earth than we do for the land on Earth,” Morin said. “There really isn’t anywhere else on the planet that we just have this much repeat.”

The project was a success, and NGA and NSF have extended their collaboration and their time on Blue Waters – this time, with the aim to extend the polar mapping project to the entire surface of the Earth.

“When we began this, we just didn’t have HPC experience,” said Morin. “Last time I touched HPC before this project, the computer was a Cray-2. We needed software like Swift and Parsl for sub-scheduling – we’re doing hundreds of thousands of jobs, huge networking and automation. The community just isn’t used to this – you know, the next version of the poles is probably two petabytes! […] These projects are too big for any one agency – we’re talking public, private, multiple agencies, civilian defense… we have to bring everybody to bear on projects this large.”

To Morin, though, this is clearly still just the beginning. Morin cites a project (“Planet”) that is launching hundreds of shoebox-sized satellites for geospatial mapping. “There’s so much data coming through there that we just can’t think of how we’re going to process it even now,” he said. Of course, he does have some ideas: he recalls another project (“Iceberg”) using machine learning algorithms to detect permafrost in the Arctic.

“So,” he says excitedly, “if we can keep throwing imagery at this…”

[*] Paul Morin’s talk, “The use of NSF HPC for the Production of the Earth’s Topography,” was held last week as part of the NSF Office of Advanced Cyberinfrastructure’s Cyberinfrastructure Webinar Series. To read more about the talk, click here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire