Cerebras Debuts AI Supercomputer-on-a-Wafer

By Tiffany Trader

August 27, 2019

Could wafer scale silicon from Cerebras Systems be the first “supercomputer on a chip” worthy of the designation? Last week at Hot Chips at Stanford University, the Silicon Valley startup debuted the largest chip ever built, a 46,225 square millimeter silicon wafer packing 1.2 trillion transistors. Cerebras says the chip’s 400,000 AI-optimized cores can train models 100-1,000 times faster than the current leading AI chip, Nvidia’s V100 GPU.

The Wafer Scale Engine is primarily an AI training machine, aimed to harvest sparsity, so it’s not a supercomputing machine, per se, but like other accelerators, it can work in tandem with and accelerate traditional modeling and simulation workloads. All three of the United States planned exascale-class supercomputers will support AI and data analytics capabilities.

To manufacture its Wafer Scale Engine, which is 57x larger than the current biggest chip (Nvidia’s GV100 GPU), Cerebras, working with TSMC’s 16-nm node, starts with a 300 mm wafer and removes the largest possible square, creating a single silicon chip with 400,000 sparse linear algebra cores, i.e., SLA cores, designed for sparse workloads like deep learning. The integration of these cores into a unified array on a single piece of silicon enables models to be trained in minutes, says Cerebras.

“We can map the entire neural network onto our compute array, we don’t put one layer, save it, another layer, save it. That allows us to achieve model parallel performance and scale linearly,” said Cerebras Founder and CEO Andrew Feldman in an interview with HPCwire. Feldman was the key figure behind Seamicro, which created the Atom-based microserver over a decade ago.

Cerebras’ wafer-scale engine has total of 18 gigabytes of on chip SRAM accessible within a single clock cycle, providing an aggregate 9 petabytes per second of memory bandwidth. An on-chip, all-hardware mesh-connected communication network delivers an aggregate bandwidth of 100 petabits per second.

Yield was one of the biggest challenges that Cerebras’ engineers, working closely with TSMC, had to overcome. Feldman counts it as one of the five major hurdles, along with cross-die connectivity, thermal expansion, packaging and cooling.

“Those were historically the five reasons why in the past 60 years, nobody could make one of these,” he said. “Cross-die connectivity and yield were the hardest. Once you’ve you succeeded, in that, you had to grapple with thermal expansion, packaging and cooling.”

Cerebras’ Wafer Scale Engine is comprised of 84 processing tiles, acting as one device

Cerebras invented a technique as part of the lithographic process to lay thousands of communications links across every scribe line. The result, said Feldman, is that rather than behaving like one-hundred chips [84 specifically], the wafer-scale engine behaves like 400,000 cores. “The software has no knowledge of whether it’s on one chip or another chip; it just sees this array,” the CEO said. Cerebras collaborated with TSMC for more than two years to develop the necessary lithographic techniques.

Cerebras can reportedly yield every wafer that TSMC delivers; 100 percent yield. An array of repeated identical tiles is built into the wafer, resulting in 400,000 very small cores, enabling redundancy.

“When it comes to yield, redundancy is your friend,” said Sean Li, chief architect and co-founder, in his Hot Chips talk.

Only 1.5 percent of the overall die is dedicated to spare cores and links, and flaws can be circumvented using these spares.

The next challenge was getting this wafer-size chip onto a motherboard, and dealing with the coefficient of thermal expansion; in other words how do you prevent a silicon chip this size from cracking as the fiberglass printed circuit board expands? Cerebras says it invented a material and a new type of connector to absorb some of that difference even when the two elements were no longer plumb.

Cerebras Wafer Scale Engine (WSE) manufacturing process

Nearly every step of the manufacturing process had to be rethought and customized. “Now that we had the silicon connector, and a printed circuit board, we had another problem nobody else had ever encountered, which is nobody’s been able to package this,” said Feldman. “Nobody had a cold plate for it. Nobody knew how to design a PCB that was appropriate for it. And there were no tools in the manufacturing supply chain that allowed us to achieve the alignment we needed, that had the handling…. We had to invent tools that carried a wafer, we had to invent equipment to qualify and test whole wafers. We had to invent the software that did alignment, all of this so that we could yield a wafer. The final problem was how do you power and how do you cool it.”

The chip is too large for power or cooling to be sent across horizontally, so a third dimension, what Cerebras calls the Z dimension, was used in both cases. With this technique, power isn’t delivered across the PCB, it’s delivered through it. The PCBs have thousands of little holes, through-silicon-vias, and power is delivered through the via so the distance is not very far.

For cooling, rather than running cool water or air across it, cool water is punched down using a copper cold plate with a grid of tiny fins. Each die reticle cooling area contains about 100 fins, so that’s roughly 840 fins ferrying away the heat. The liquid drops down into a heat exchanger that uses air to cool the water. First-gen cold plate technology is not for the faint of heart, but Cerebras reports they’ve had it working “for years” now.

Cerebras has a full system under development and says it has been running customer workloads for months; its first customer shipment is scheduled for early September. Cerebras expects to reveal details of its system at Supercomputing in November with customers in the HPC/supercomputing space. The company reports it is currently clustering its wafer-scale chip nodes, using 100 Gigabit Ethernet.

Hopefully we’ll learn the clock speed of the chip as well as the power consumption for the complete system when it is announced. It’s been estimated that the chip will use 14-15 kilowatts of power, which isn’t unreasonable if it can really do the AI training work of 100-1,000 GPUs. As a point of comparison, the DGX-2 has a max power draw of 10 kilowatts — necessary to drive the 16 V100s, a couple Platinum Xeons, the NVSwitch, eight InfiniBand ports, plus NVMe storage.

Cerebras has been quietly developing its technology since 2015; it has secured $112 million in venture funding and has a staff of nearly 200. CEO Feldman, Chief Architect Sean Li, CTO Gary Lauterback and others in the core leadership team all hail from Seamicro, which was acquired by AMD in 2012 for $355 million.

“We got a little bit lucky in 2007, when Gary and I started Seamicro, but hardware was at a nadir in the valley. Every venture capitalist had their new guy from VMware, who just thought the answer was another virtual machine, and didn’t understand hardware at all. By 2016, we were back on the rise. And people understood that if you want to go fast, you need [better] hardware,” said Feldman.

“And so there was a willingness to engage in new architectures and willingness to engage in new system design, and that’s really important. I don’t think you can achieve the type of performance that we aspire to if you just build a chip; you’re going to put it in somebody else’s server, and you’re going to put your Ferrari in a Volkswagen chassis. And you’re going to get Volkswagen performance. If you want to build a Ferrari, you need to think about how to feed it. And its handling and its steering and every last aspect. And that’s why we’re system builders; that’s what we thought we needed to do to do this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Google’s ML Compiler Initiative Advances

September 12, 2019

Machine learning models running on everything from cloud platforms to mobile phones are posing new challenges for developers faced with growing tool complexity. Google’s TensorFlow team unveiled an open-source machine Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially la Read more…

By Tiffany Trader

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This