Cerebras Debuts AI Supercomputer-on-a-Wafer

By Tiffany Trader

August 27, 2019

Could wafer scale silicon from Cerebras Systems be the first “supercomputer on a chip” worthy of the designation? Last week at Hot Chips at Stanford University, the Silicon Valley startup debuted the largest chip ever built, a 46,225 square millimeter silicon wafer packing 1.2 trillion transistors. Cerebras says the chip’s 400,000 AI-optimized cores can train models 100-1,000 times faster than the current leading AI chip, Nvidia’s V100 GPU.

The Wafer Scale Engine is primarily an AI training machine, aimed to harvest sparsity, so it’s not a supercomputing machine, per se, but like other accelerators, it can work in tandem with and accelerate traditional modeling and simulation workloads. All three of the United States planned exascale-class supercomputers will support AI and data analytics capabilities.

To manufacture its Wafer Scale Engine, which is 57x larger than the current biggest chip (Nvidia’s GV100 GPU), Cerebras, working with TSMC’s 16-nm node, starts with a 300 mm wafer and removes the largest possible square, creating a single silicon chip with 400,000 sparse linear algebra cores, i.e., SLA cores, designed for sparse workloads like deep learning. The integration of these cores into a unified array on a single piece of silicon enables models to be trained in minutes, says Cerebras.

“We can map the entire neural network onto our compute array, we don’t put one layer, save it, another layer, save it. That allows us to achieve model parallel performance and scale linearly,” said Cerebras Founder and CEO Andrew Feldman in an interview with HPCwire. Feldman was the key figure behind Seamicro, which created the Atom-based microserver over a decade ago.

Cerebras’ wafer-scale engine has total of 18 gigabytes of on chip SRAM accessible within a single clock cycle, providing an aggregate 9 petabytes per second of memory bandwidth. An on-chip, all-hardware mesh-connected communication network delivers an aggregate bandwidth of 100 petabits per second.

Yield was one of the biggest challenges that Cerebras’ engineers, working closely with TSMC, had to overcome. Feldman counts it as one of the five major hurdles, along with cross-die connectivity, thermal expansion, packaging and cooling.

“Those were historically the five reasons why in the past 60 years, nobody could make one of these,” he said. “Cross-die connectivity and yield were the hardest. Once you’ve you succeeded, in that, you had to grapple with thermal expansion, packaging and cooling.”

Cerebras’ Wafer Scale Engine is comprised of 84 processing tiles, acting as one device

Cerebras invented a technique as part of the lithographic process to lay thousands of communications links across every scribe line. The result, said Feldman, is that rather than behaving like one-hundred chips [84 specifically], the wafer-scale engine behaves like 400,000 cores. “The software has no knowledge of whether it’s on one chip or another chip; it just sees this array,” the CEO said. Cerebras collaborated with TSMC for more than two years to develop the necessary lithographic techniques.

Cerebras can reportedly yield every wafer that TSMC delivers; 100 percent yield. An array of repeated identical tiles is built into the wafer, resulting in 400,000 very small cores, enabling redundancy.

“When it comes to yield, redundancy is your friend,” said Sean Li, chief architect and co-founder, in his Hot Chips talk.

Only 1.5 percent of the overall die is dedicated to spare cores and links, and flaws can be circumvented using these spares.

The next challenge was getting this wafer-size chip onto a motherboard, and dealing with the coefficient of thermal expansion; in other words how do you prevent a silicon chip this size from cracking as the fiberglass printed circuit board expands? Cerebras says it invented a material and a new type of connector to absorb some of that difference even when the two elements were no longer plumb.

Cerebras Wafer Scale Engine (WSE) manufacturing process

Nearly every step of the manufacturing process had to be rethought and customized. “Now that we had the silicon connector, and a printed circuit board, we had another problem nobody else had ever encountered, which is nobody’s been able to package this,” said Feldman. “Nobody had a cold plate for it. Nobody knew how to design a PCB that was appropriate for it. And there were no tools in the manufacturing supply chain that allowed us to achieve the alignment we needed, that had the handling…. We had to invent tools that carried a wafer, we had to invent equipment to qualify and test whole wafers. We had to invent the software that did alignment, all of this so that we could yield a wafer. The final problem was how do you power and how do you cool it.”

The chip is too large for power or cooling to be sent across horizontally, so a third dimension, what Cerebras calls the Z dimension, was used in both cases. With this technique, power isn’t delivered across the PCB, it’s delivered through it. The PCBs have thousands of little holes, through-silicon-vias, and power is delivered through the via so the distance is not very far.

For cooling, rather than running cool water or air across it, cool water is punched down using a copper cold plate with a grid of tiny fins. Each die reticle cooling area contains about 100 fins, so that’s roughly 840 fins ferrying away the heat. The liquid drops down into a heat exchanger that uses air to cool the water. First-gen cold plate technology is not for the faint of heart, but Cerebras reports they’ve had it working “for years” now.

Cerebras has a full system under development and says it has been running customer workloads for months; its first customer shipment is scheduled for early September. Cerebras expects to reveal details of its system at Supercomputing in November with customers in the HPC/supercomputing space. The company reports it is currently clustering its wafer-scale chip nodes, using 100 Gigabit Ethernet.

Hopefully we’ll learn the clock speed of the chip as well as the power consumption for the complete system when it is announced. It’s been estimated that the chip will use 14-15 kilowatts of power, which isn’t unreasonable if it can really do the AI training work of 100-1,000 GPUs. As a point of comparison, the DGX-2 has a max power draw of 10 kilowatts — necessary to drive the 16 V100s, a couple Platinum Xeons, the NVSwitch, eight InfiniBand ports, plus NVMe storage.

Cerebras has been quietly developing its technology since 2015; it has secured $112 million in venture funding and has a staff of nearly 200. CEO Feldman, Chief Architect Sean Li, CTO Gary Lauterback and others in the core leadership team all hail from Seamicro, which was acquired by AMD in 2012 for $355 million.

“We got a little bit lucky in 2007, when Gary and I started Seamicro, but hardware was at a nadir in the valley. Every venture capitalist had their new guy from VMware, who just thought the answer was another virtual machine, and didn’t understand hardware at all. By 2016, we were back on the rise. And people understood that if you want to go fast, you need [better] hardware,” said Feldman.

“And so there was a willingness to engage in new architectures and willingness to engage in new system design, and that’s really important. I don’t think you can achieve the type of performance that we aspire to if you just build a chip; you’re going to put it in somebody else’s server, and you’re going to put your Ferrari in a Volkswagen chassis. And you’re going to get Volkswagen performance. If you want to build a Ferrari, you need to think about how to feed it. And its handling and its steering and every last aspect. And that’s why we’re system builders; that’s what we thought we needed to do to do this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire