Cerebras Debuts AI Supercomputer-on-a-Wafer

By Tiffany Trader

August 27, 2019

Could wafer scale silicon from Cerebras Systems be the first “supercomputer on a chip” worthy of the designation? Last week at Hot Chips at Stanford University, the Silicon Valley startup debuted the largest chip ever built, a 46,225 square millimeter silicon wafer packing 1.2 trillion transistors. Cerebras says the chip’s 400,000 AI-optimized cores can train models 100-1,000 times faster than the current leading AI chip, Nvidia’s V100 GPU.

The Wafer Scale Engine is primarily an AI training machine, aimed to harvest sparsity, so it’s not a supercomputing machine, per se, but like other accelerators, it can work in tandem with and accelerate traditional modeling and simulation workloads. All three of the United States planned exascale-class supercomputers will support AI and data analytics capabilities.

To manufacture its Wafer Scale Engine, which is 57x larger than the current biggest chip (Nvidia’s GV100 GPU), Cerebras, working with TSMC’s 16-nm node, starts with a 300 mm wafer and removes the largest possible square, creating a single silicon chip with 400,000 sparse linear algebra cores, i.e., SLA cores, designed for sparse workloads like deep learning. The integration of these cores into a unified array on a single piece of silicon enables models to be trained in minutes, says Cerebras.

“We can map the entire neural network onto our compute array, we don’t put one layer, save it, another layer, save it. That allows us to achieve model parallel performance and scale linearly,” said Cerebras Founder and CEO Andrew Feldman in an interview with HPCwire. Feldman was the key figure behind Seamicro, which created the Atom-based microserver over a decade ago.

Cerebras’ wafer-scale engine has total of 18 gigabytes of on chip SRAM accessible within a single clock cycle, providing an aggregate 9 petabytes per second of memory bandwidth. An on-chip, all-hardware mesh-connected communication network delivers an aggregate bandwidth of 100 petabits per second.

Yield was one of the biggest challenges that Cerebras’ engineers, working closely with TSMC, had to overcome. Feldman counts it as one of the five major hurdles, along with cross-die connectivity, thermal expansion, packaging and cooling.

“Those were historically the five reasons why in the past 60 years, nobody could make one of these,” he said. “Cross-die connectivity and yield were the hardest. Once you’ve you succeeded, in that, you had to grapple with thermal expansion, packaging and cooling.”

Cerebras’ Wafer Scale Engine is comprised of 84 processing tiles, acting as one device

Cerebras invented a technique as part of the lithographic process to lay thousands of communications links across every scribe line. The result, said Feldman, is that rather than behaving like one-hundred chips [84 specifically], the wafer-scale engine behaves like 400,000 cores. “The software has no knowledge of whether it’s on one chip or another chip; it just sees this array,” the CEO said. Cerebras collaborated with TSMC for more than two years to develop the necessary lithographic techniques.

Cerebras can reportedly yield every wafer that TSMC delivers; 100 percent yield. An array of repeated identical tiles is built into the wafer, resulting in 400,000 very small cores, enabling redundancy.

“When it comes to yield, redundancy is your friend,” said Sean Li, chief architect and co-founder, in his Hot Chips talk.

Only 1.5 percent of the overall die is dedicated to spare cores and links, and flaws can be circumvented using these spares.

The next challenge was getting this wafer-size chip onto a motherboard, and dealing with the coefficient of thermal expansion; in other words how do you prevent a silicon chip this size from cracking as the fiberglass printed circuit board expands? Cerebras says it invented a material and a new type of connector to absorb some of that difference even when the two elements were no longer plumb.

Cerebras Wafer Scale Engine (WSE) manufacturing process

Nearly every step of the manufacturing process had to be rethought and customized. “Now that we had the silicon connector, and a printed circuit board, we had another problem nobody else had ever encountered, which is nobody’s been able to package this,” said Feldman. “Nobody had a cold plate for it. Nobody knew how to design a PCB that was appropriate for it. And there were no tools in the manufacturing supply chain that allowed us to achieve the alignment we needed, that had the handling…. We had to invent tools that carried a wafer, we had to invent equipment to qualify and test whole wafers. We had to invent the software that did alignment, all of this so that we could yield a wafer. The final problem was how do you power and how do you cool it.”

The chip is too large for power or cooling to be sent across horizontally, so a third dimension, what Cerebras calls the Z dimension, was used in both cases. With this technique, power isn’t delivered across the PCB, it’s delivered through it. The PCBs have thousands of little holes, through-silicon-vias, and power is delivered through the via so the distance is not very far.

For cooling, rather than running cool water or air across it, cool water is punched down using a copper cold plate with a grid of tiny fins. Each die reticle cooling area contains about 100 fins, so that’s roughly 840 fins ferrying away the heat. The liquid drops down into a heat exchanger that uses air to cool the water. First-gen cold plate technology is not for the faint of heart, but Cerebras reports they’ve had it working “for years” now.

Cerebras has a full system under development and says it has been running customer workloads for months; its first customer shipment is scheduled for early September. Cerebras expects to reveal details of its system at Supercomputing in November with customers in the HPC/supercomputing space. The company reports it is currently clustering its wafer-scale chip nodes, using 100 Gigabit Ethernet.

Hopefully we’ll learn the clock speed of the chip as well as the power consumption for the complete system when it is announced. It’s been estimated that the chip will use 14-15 kilowatts of power, which isn’t unreasonable if it can really do the AI training work of 100-1,000 GPUs. As a point of comparison, the DGX-2 has a max power draw of 10 kilowatts — necessary to drive the 16 V100s, a couple Platinum Xeons, the NVSwitch, eight InfiniBand ports, plus NVMe storage.

Cerebras has been quietly developing its technology since 2015; it has secured $112 million in venture funding and has a staff of nearly 200. CEO Feldman, Chief Architect Sean Li, CTO Gary Lauterback and others in the core leadership team all hail from Seamicro, which was acquired by AMD in 2012 for $355 million.

“We got a little bit lucky in 2007, when Gary and I started Seamicro, but hardware was at a nadir in the valley. Every venture capitalist had their new guy from VMware, who just thought the answer was another virtual machine, and didn’t understand hardware at all. By 2016, we were back on the rise. And people understood that if you want to go fast, you need [better] hardware,” said Feldman.

“And so there was a willingness to engage in new architectures and willingness to engage in new system design, and that’s really important. I don’t think you can achieve the type of performance that we aspire to if you just build a chip; you’re going to put it in somebody else’s server, and you’re going to put your Ferrari in a Volkswagen chassis. And you’re going to get Volkswagen performance. If you want to build a Ferrari, you need to think about how to feed it. And its handling and its steering and every last aspect. And that’s why we’re system builders; that’s what we thought we needed to do to do this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the training and inference performance of systems that are availa Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

SC21 Keynote: Internet Pioneer Vint Cerf on Shakespeare, Chatbots, and Being Human

November 17, 2021

Unlike the deep technical dives of many SC keynotes, Internet pioneer Vint Cerf steered clear of the trenches and took leisurely stroll through a range of human-machine interactions, touching on ML’s growing capabilities while noting potholes to be avoided if possible. Cerf, of course, is co-designer with Bob Kahn of the TCP/IP protocols and architecture of the internet. He’s heralded... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire