Cerebras Debuts AI Supercomputer-on-a-Wafer

By Tiffany Trader

August 27, 2019

Could wafer scale silicon from Cerebras Systems be the first “supercomputer on a chip” worthy of the designation? Last week at Hot Chips at Stanford University, the Silicon Valley startup debuted the largest chip ever built, a 46,225 square millimeter silicon wafer packing 1.2 trillion transistors. Cerebras says the chip’s 400,000 AI-optimized cores can train models 100-1,000 times faster than the current leading AI chip, Nvidia’s V100 GPU.

The Wafer Scale Engine is primarily an AI training machine, aimed to harvest sparsity, so it’s not a supercomputing machine, per se, but like other accelerators, it can work in tandem with and accelerate traditional modeling and simulation workloads. All three of the United States planned exascale-class supercomputers will support AI and data analytics capabilities.

To manufacture its Wafer Scale Engine, which is 57x larger than the current biggest chip (Nvidia’s GV100 GPU), Cerebras, working with TSMC’s 16-nm node, starts with a 300 mm wafer and removes the largest possible square, creating a single silicon chip with 400,000 sparse linear algebra cores, i.e., SLA cores, designed for sparse workloads like deep learning. The integration of these cores into a unified array on a single piece of silicon enables models to be trained in minutes, says Cerebras.

“We can map the entire neural network onto our compute array, we don’t put one layer, save it, another layer, save it. That allows us to achieve model parallel performance and scale linearly,” said Cerebras Founder and CEO Andrew Feldman in an interview with HPCwire. Feldman was the key figure behind Seamicro, which created the Atom-based microserver over a decade ago.

Cerebras’ wafer-scale engine has total of 18 gigabytes of on chip SRAM accessible within a single clock cycle, providing an aggregate 9 petabytes per second of memory bandwidth. An on-chip, all-hardware mesh-connected communication network delivers an aggregate bandwidth of 100 petabits per second.

Yield was one of the biggest challenges that Cerebras’ engineers, working closely with TSMC, had to overcome. Feldman counts it as one of the five major hurdles, along with cross-die connectivity, thermal expansion, packaging and cooling.

“Those were historically the five reasons why in the past 60 years, nobody could make one of these,” he said. “Cross-die connectivity and yield were the hardest. Once you’ve you succeeded, in that, you had to grapple with thermal expansion, packaging and cooling.”

Cerebras’ Wafer Scale Engine is comprised of 84 processing tiles, acting as one device

Cerebras invented a technique as part of the lithographic process to lay thousands of communications links across every scribe line. The result, said Feldman, is that rather than behaving like one-hundred chips [84 specifically], the wafer-scale engine behaves like 400,000 cores. “The software has no knowledge of whether it’s on one chip or another chip; it just sees this array,” the CEO said. Cerebras collaborated with TSMC for more than two years to develop the necessary lithographic techniques.

Cerebras can reportedly yield every wafer that TSMC delivers; 100 percent yield. An array of repeated identical tiles is built into the wafer, resulting in 400,000 very small cores, enabling redundancy.

“When it comes to yield, redundancy is your friend,” said Sean Li, chief architect and co-founder, in his Hot Chips talk.

Only 1.5 percent of the overall die is dedicated to spare cores and links, and flaws can be circumvented using these spares.

The next challenge was getting this wafer-size chip onto a motherboard, and dealing with the coefficient of thermal expansion; in other words how do you prevent a silicon chip this size from cracking as the fiberglass printed circuit board expands? Cerebras says it invented a material and a new type of connector to absorb some of that difference even when the two elements were no longer plumb.

Cerebras Wafer Scale Engine (WSE) manufacturing process

Nearly every step of the manufacturing process had to be rethought and customized. “Now that we had the silicon connector, and a printed circuit board, we had another problem nobody else had ever encountered, which is nobody’s been able to package this,” said Feldman. “Nobody had a cold plate for it. Nobody knew how to design a PCB that was appropriate for it. And there were no tools in the manufacturing supply chain that allowed us to achieve the alignment we needed, that had the handling…. We had to invent tools that carried a wafer, we had to invent equipment to qualify and test whole wafers. We had to invent the software that did alignment, all of this so that we could yield a wafer. The final problem was how do you power and how do you cool it.”

The chip is too large for power or cooling to be sent across horizontally, so a third dimension, what Cerebras calls the Z dimension, was used in both cases. With this technique, power isn’t delivered across the PCB, it’s delivered through it. The PCBs have thousands of little holes, through-silicon-vias, and power is delivered through the via so the distance is not very far.

For cooling, rather than running cool water or air across it, cool water is punched down using a copper cold plate with a grid of tiny fins. Each die reticle cooling area contains about 100 fins, so that’s roughly 840 fins ferrying away the heat. The liquid drops down into a heat exchanger that uses air to cool the water. First-gen cold plate technology is not for the faint of heart, but Cerebras reports they’ve had it working “for years” now.

Cerebras has a full system under development and says it has been running customer workloads for months; its first customer shipment is scheduled for early September. Cerebras expects to reveal details of its system at Supercomputing in November with customers in the HPC/supercomputing space. The company reports it is currently clustering its wafer-scale chip nodes, using 100 Gigabit Ethernet.

Hopefully we’ll learn the clock speed of the chip as well as the power consumption for the complete system when it is announced. It’s been estimated that the chip will use 14-15 kilowatts of power, which isn’t unreasonable if it can really do the AI training work of 100-1,000 GPUs. As a point of comparison, the DGX-2 has a max power draw of 10 kilowatts — necessary to drive the 16 V100s, a couple Platinum Xeons, the NVSwitch, eight InfiniBand ports, plus NVMe storage.

Cerebras has been quietly developing its technology since 2015; it has secured $112 million in venture funding and has a staff of nearly 200. CEO Feldman, Chief Architect Sean Li, CTO Gary Lauterback and others in the core leadership team all hail from Seamicro, which was acquired by AMD in 2012 for $355 million.

“We got a little bit lucky in 2007, when Gary and I started Seamicro, but hardware was at a nadir in the valley. Every venture capitalist had their new guy from VMware, who just thought the answer was another virtual machine, and didn’t understand hardware at all. By 2016, we were back on the rise. And people understood that if you want to go fast, you need [better] hardware,” said Feldman.

“And so there was a willingness to engage in new architectures and willingness to engage in new system design, and that’s really important. I don’t think you can achieve the type of performance that we aspire to if you just build a chip; you’re going to put it in somebody else’s server, and you’re going to put your Ferrari in a Volkswagen chassis. And you’re going to get Volkswagen performance. If you want to build a Ferrari, you need to think about how to feed it. And its handling and its steering and every last aspect. And that’s why we’re system builders; that’s what we thought we needed to do to do this.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire