Deep Learning on GPUs: Successes and Promises

By Sparsh Mittal

August 27, 2019

The rise of deep-learning (DL) has been fueled by the improvements in accelerators. Accelerators allow DL models to crunch a large amount of data, which is vital for them to achieve high accuracy. In fact, AlexNet, the famous winner of the ILSVRC 2012 competition, was trained on GPUs. GPU continues to remain the most widely used accelerator for DL applications, due to several of its features, such as high performance, continued improvements in its architecture and software-stack, ease of programming using high-level languages such as CUDA and availability of GPUs in cloud.

“Accelerating DL models” is chasing a moving target

As DL models are becoming more pervasive and accurate, their compute and memory requirements are growing tremendously. For example, training a deep neural network (DNN) takes a large amount of time, e.g., 100-epoch training of ResNet-50 on ImageNet dataset on one M40 GPU requires 14 days. Similarly, during inference, meeting the latency targets while achieving high data-reuse and throughput is a major challenge.

Extracting last bit of performance from GPU

While treating GPU as a black box is a convenient abstraction of DL researchers, even simple architectural optimizations can boost the performance of GPU significantly. For example, since the input-data to DNN remains unchanged, it can be stored in the constant cache. The weights can be loaded in shared memory to avoid incurring the penalty of accessing global memory. Also, partial sums can be stored in the register file to achieve efficient accumulation.

In fact, architecture-oblivious techniques run the risk of losing their theoretical benefits. For example, although weight pruning is expected to increase performance by virtue of reducing the model size of a DNN, on GPUs, pruning actually harms the performance of DNNs. This is because weight pruning makes the DNN sparse, which requires sparse matrix-multiplication (MM). However, optimizations such as memory-coalescing and matrix tiling cannot be performed on sparse MM. To address this inefficiency, researchers suggest doing “node pruning,” and not “weight pruning” on GPU.

Node pruning does not make the network sparse, and although it brings a smaller reduction in model size than weight pruning, it achieves higher throughput by more effectively utilizing the massive resources of GPUs.

Similarly, optimizing data-layouts, batching, and data-reuse is important to get high performance. Also, since convolution can be performed in multiple ways such as FFT, Winograd, lowering (matrix-multiplication) or direct convolution, the choice of the right strategy is essential. The recent survey paper I’ve written with Shraiysh Vaishay reviews many techniques for optimizing DL on GPUs.

Utilizing both CPU memory and GPU memory

DNN training requires a significant amount of memory, which may exceed the memory capacity of a single GPU. For example, training VGG-16 with a batch size of 256 requires 28GB memory, which is larger than the 12GB memory capacity of Titan X.

To alleviate the memory bottleneck issue, the memory resources of CPUs can be used. In the back-propagation algorithm, the feature maps of a layer, which are produced during the forward-propagation phase, are later reused during the backward-propagation phase of the same layer. Since current machine-learning frameworks allocate the memory for accommodating the needs of all the layers, these feature maps stay in GPU memory for a long time without getting used. To alleviate this inefficiency, feature maps not required by the current layer in the forward-propagation phase are offloaded to CPU memory and released from GPU memory. During the backward propagation phase, these feature maps are fetched from CPU memory to GPU memory just before the processing of that layer. Evidently, the GPU memory management techniques and high-bandwidth interconnect such as NVLink can play a significant role in accelerating training of DNN workloads.

HPC is vital for AI

Distributed computing over a cluster of GPUs can reduce the training time of DNNs significantly. For example, researchers from SenseTime Research and Nanyang Technological University, Singapore have trained AlexNet over ImageNet dataset in just 1.5 minutes. They have used a cluster of 64 machines, each with 8 Volta GPUs. They also perform a range of optimizations at all levels of abstraction, such as using NVIDIA’s NCCL communication library and storing parameters and gradients in half-precision (FP16). Also, they overlap the communication of gradient of one layer with backward propagation of subsequent layers, combine multiple allreduce operations into one operation to reduce the memory copy overhead and intelligently transmit only those gradients that exceed a threshold.

Similarly, researchers from Sony corporation have trained ResNet-50 in just 2 minutes using 3,456 Volta GPUs. This “race to train DNNs” is no less exciting than the “race to the moon” seen in the 1960s! On a more serious note, the DNN training performance can be a more meaningful metric for HPC systems than the peak performance metrics such as Exaflop. This has already led to the creation of benchmarks such as DawnBench and MLPerf.

AI accelerator future promises to be exciting

While the general-purpose nature of GPU makes it useful for a broad range of applications, it also precludes thorough optimization of GPU architecture for AI applications. In this regard, custom-made AI accelerators such as Google’s tensor processing unit (TPU) are in a vantage position. It remains to be seen whether the future trajectory of GPU architecture will see revolutionary or evolutionary changes. It will be also interesting to see how well the next-generation GPU strikes a balance between the conflicting goals of special-purpose and general-purpose computing, and how well it competes with the other AI accelerators.

About the Author

Sparsh Mittal received the B.Tech. degree in electronics and communications engineering from IIT, Roorkee, India and the Ph.D. degree in computer engineering from Iowa State University (ISU), USA. He worked as a Post-Doctoral Research Associate at Oak Ridge National Lab (ORNL), USA for 3 years. He is currently working as an assistant professor at IIT Hyderabad, India. He was the graduating topper of his batch in B.Tech and has received fellowship from ISU and performance award from ORNL. Sparsh has published more than 70 papers in top conferences and journals. His research interests include accelerators for machine learning, non-volatile memory, and GPU architectures. His webpage is http://www.iith.ac.in/~sparsh/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This