Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

By Tiffany Trader

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially launched. The Dell EMC-built supercomputer spans 8,008 Mellanox HDR connected Xeon Platinum 8280 nodes, capable of 23.5 Linpack petaflops, making it the fastest academic supercomputer in the world. Frontera joins more than a dozen other TACC systems, including Stampede2, which is now the second fastest academic system in the U.S.

Ahead of today’s unveiling ceremony, which brought representatives from Intel, IBM, Nvidia, Mellanox, DDN and the National Science Foundation (NSF) to the University of Texas at Austin, HPCwire spoke with TACC Director Dan Stanzione about the science that’s already being enabled on Frontera, as well as other details of the $60-million NSF leadership computing award (announced last year), including two GPU-powered subsystems that are currently undergoing testing in preparation for production-readiness within the next couple of months.

TACC’s Frontera system, featuring 8,008 Dell EMC PowerEdge server nodes

The primary Frontera system is powered by Intel’s highest-bin SP Cascade Lake processors (the Xeon Platinum 8280s), interconnected with HDR-100 links to each node, and full 200 Gbps HDR links between leaf and core switches. Data Direct Networks contributed the main storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability). Frontera’s 90 racks leverage direct liquid cooling technology from CoolIT, enabling about twice as many racks in the same footprint as the recently retired Stampede1. Running Linpack (the system entered the June 2019 Top500 list at number five), Frontera’s Xeons never got above 50C so won’t be thermally constrained; unlike Stampede2, which hit temps of up to 85C on its Linpack run, Stanzione shared.

In August, TACC fielded two Frontera subsystems. One is a cluster comprised of 360 Nvidia Quadro RTX 5000 GPUs submerged in liquid coolant filled racks developed by GRC. The liquid cooling specialists–formerly known as Green Revolution Cooling–are also based in Austin and TACC deployed the first GRC prototype outside of the company’s lab back in 2009. The new six tank system (internally, it’s called Maverick) uses Mellanox HDR-100 networking and provides 4 petaflops of peak single-precision performance.

Stanzione revealed that the Quadro RTX nodes were brought in under a new single-precision academic program that Nvidia is launching that provides CUDA licensing support and maybe even some nice discounts for RTX family parts for academic sites (we are tracking down additional details and will report further soon).

TACC’s new Longhorn: an IBM Power9 cluster with 448 Nvidia V100 GPUs

TACC is also deploying an IBM Power9 subsystem with 448 V100 GPUs (in the 4:1 GPU-to-CPU configuration) offering a peak aggregate output of 3.5 double-precision petaflops. The InfiniBand-EDR connected cluster reprises the Longhorn name at TACC (the original Longhorn, a GPU cluster outfitted with Quadro FX 5800 parts, was decommissioned in 2014). Frontera’s two GPU subsystems will target artificial intelligence, machine learning, and molecular dynamics research.

In the coming months, Frontera will also be integrating with cloud providers Amazon, Google, and Microsoft to provide researchers access to a range of emerging computing technologies and long-term storage. “Cloud is not an either/or decision, they don’t really do the same thing,” Stanzione said at the Rice Oil and Gas conference in March, referring to traditional on-prem HPC and cloud. “We are bringing in the cloud to use the things the cloud does well on, publishing data, and access to composable workflows, things like natural language processing. And also to play with the latest gear, FPGAs, Tensor Processors, etc., and see what the users want.”

Since entering early science operations the first week of July, Frontera has supported 39 science projects from across the NSF space and Stanzione expects that number to expand to about 100. As NSF’s leadership-class “tier 1” system, the follow-on to Blue Waters at the National Center for Supercomputing Applications, Frontera’s mission is to provide open science projects with significant system time; some projects are at the scale where they require 5 percent of the machine’s time in a year, for example. Smaller projects will be kept on Stampede2.

Frontera will run for at least five years; 80 percent of cycles are selected through a competitive process, while 20 percent are discretionary. Frontera will support high-impact science in nearly every domain. Early workloads include astrophysics, quantum chemistry, photovoltaic materials research, machine learning – and just this past week hurricane modeling.

TACC has been working with the storm research community for about a decade and has discretionary allocation time for just this kind of emergency, seasonal workload. “They call us when there’s a storm, and usually, we’re able to let them on,” said Stanzione. “Obviously, these forecasts are much less useful two or three days from now. So we just give them a chunk of time, wherever, wherever we have the space.”

As Hurricane Dorian was still gaining strength over the Atlantic last week, TACC provided a discretionary allocation for researchers Clint Dawson (University of Texas at Austin) and Jason Fleming (University of North Carolina), to carry out storm surge forecasting on the hurricane that reached category-5 status on Sunday using both Stampede2 and Frontera.

The researchers were able to get their code up in running on Frontera in about 10 minutes due to how similar Frontera is to Stampede2 with respect to its software stack and architecture — and they achieved twice the speed on the same number of nodes, Stanzione told us. Some of this speedup is attributable to the fact that they had a fairly quiet system to run on, so less contention for I/O and other resources. More generally, Stanzione is seeing a 10-15 percent performance uplift moving from Skylake to Cascade Lake, with up to a 30 percent improvement on codes that aren’t memory bandwidth bound.

The Intel security mitigations (that address side channel attack vulnerabilities, Spectre and Meltdown, et al.), haven’t impacted TACC very significantly, according to Stanzione. With the Skylake-based Stampede2 nodes, at most they saw up to a 10 percent hit on data intensive workloads with a lot of small I/O, but for the majority of floating point bound simulation codes, the performance penalty was around 1-2 percent. With the new hardware mitigations on Cascade Lake, TACC is not able to conduct direct with-and-without comparisons, but given codes are hitting the projected performance targets, Stanzione believes that if there is an impact, it’s minor.

TACC will also be deploying a small fleet of Optane nodes as part of the Frontera project: 16 quad-socket nodes filled with the 256 GB Optane Persistent Memory Modules — that’s six per socket, 24 per node, for an aggregate of more than 98 TB of Optane memory.

TACC’s engineers will be experimenting with the Optane DIMMs in both “I/O mode” and memory mode, using it for in-memory database applications, and to boost fault tolerance for check pointing. “We haven’t decided if we like it better as a fast storage node or a sort of a slow but really large memory node because it’s sort of a hybrid between storage and memory in a lot of ways. So we’ll have a hundred terabytes, 16 of these broad-socket nodes, and we’ll see what users want to do with it,” said Stanzione.

A phase-2 NSF leadership system that is 10x the capacity of Frontera is on the roadmap for 2024 deployment, which will be after the DOE Frontier (ORNL) and El Capitan (LLNL) machines are up and running. “Five year planning is more in the style that DOE usually gets to do,” Stanzione has said. This longer lead time allows TACC and its NSF collaborators to gather data and thoughtfully plan what makes sense for the second half of the 2020s. They’ll have a BOF at SC this year to start getting feedback and will begin working on a conceptual design next year, drawing on the lessons learned from Frontera and its subsystems, and as always listening closely to their end user scientific community, whom Stanzione continuously references throughout our nearly hour-long conversation.

This community-needs focus came up again when we talked about the decision to go with a straight x86 machine (plus smaller GPU subsystems), even though in the U.S. at least extreme-scale architectures have been trending toward fat GPU-node systems. (See five DOE CORAL awards, Perlmutter at NERSC, Big Red 2 at Indiana University, to name a few. There are of course notable exceptions to the fat-node approach, especially internationally, e.g., SuperMUC-NG at LRZ and the upcoming post-K Arm “Fugaku” system at RIKEN. For the record, Stanzione is intrigued by Arm and the Fujitsu post-K chip, specifically.)

“It helps that in the DOE space, most of the codes are C++. They can compel the developers to go the direction they want to go, and they use templating libraries like Cocos and Raja to get performance out of those,” said Stanzione. “But, you know, if I told our community to do that, first of all, right now, none of the codes would work. And, you know, I don’t have two years to get to it, either. Most of those systems [that you mentioned] are around the 2021 timeframe. Assuming they can make the software switch — and they have lots of good reasons to think that they can — their community is just very different.”

In a bit of friendly posturing, Stanzione also said he expects that despite those [big GPU] systems having higher spec’d performance (peak and Linpack) and higher funding levels, there will be a set of codes for which Frontera will outrun systems like Summit and Sierra. “We’ll put our productivity per dollar up against any of them,” said Stanzione, “and I think there’ll be a set of problems, particularly some of the big adaptive mesh, partial differential equations type models, where I bet we can outrun them in just raw speed because those codes just aren’t really friendly to those fat nodes. If you take away the GPUs, then Summit’s essentially a 3,000 node machine of plain-old CPUs and we have a lot more (nodes) than that. So, I think we will find some problems over the next two or three months, where Frontera is the fastest machine in the world.”

Read more about the science Frontera will be enabling at: https://fronteraweb.tacc.utexas.edu/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire