Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

By Tiffany Trader

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially launched. The Dell EMC-built supercomputer spans 8,008 Mellanox HDR connected Xeon Platinum 8280 nodes, capable of 23.5 Linpack petaflops, making it the fastest academic supercomputer in the world. Frontera joins more than a dozen other TACC systems, including Stampede2, which is now the second fastest academic system in the U.S.

Ahead of today’s unveiling ceremony, which brought representatives from Intel, IBM, Nvidia, Mellanox, DDN and the National Science Foundation (NSF) to the University of Texas at Austin, HPCwire spoke with TACC Director Dan Stanzione about the science that’s already being enabled on Frontera, as well as other details of the $60-million NSF leadership computing award (announced last year), including two GPU-powered subsystems that are currently undergoing testing in preparation for production-readiness within the next couple of months.

TACC’s Frontera system, featuring 8,008 Dell EMC PowerEdge server nodes

The primary Frontera system is powered by Intel’s highest-bin SP Cascade Lake processors (the Xeon Platinum 8280s), interconnected with HDR-100 links to each node, and full 200 Gbps HDR links between leaf and core switches. Data Direct Networks contributed the main storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability). Frontera’s 90 racks leverage direct liquid cooling technology from CoolIT, enabling about twice as many racks in the same footprint as the recently retired Stampede1. Running Linpack (the system entered the June 2019 Top500 list at number five), Frontera’s Xeons never got above 50C so won’t be thermally constrained; unlike Stampede2, which hit temps of up to 85C on its Linpack run, Stanzione shared.

In August, TACC fielded two Frontera subsystems. One is a cluster comprised of 360 Nvidia Quadro RTX 5000 GPUs submerged in liquid coolant filled racks developed by GRC. The liquid cooling specialists–formerly known as Green Revolution Cooling–are also based in Austin and TACC deployed the first GRC prototype outside of the company’s lab back in 2009. The new six tank system (internally, it’s called Maverick) uses Mellanox HDR-100 networking and provides 4 petaflops of peak single-precision performance.

Stanzione revealed that the Quadro RTX nodes were brought in under a new single-precision academic program that Nvidia is launching that provides CUDA licensing support and maybe even some nice discounts for RTX family parts for academic sites (we are tracking down additional details and will report further soon).

TACC’s new Longhorn: an IBM Power9 cluster with 448 Nvidia V100 GPUs

TACC is also deploying an IBM Power9 subsystem with 448 V100 GPUs (in the 4:1 GPU-to-CPU configuration) offering a peak aggregate output of 3.5 double-precision petaflops. The InfiniBand-EDR connected cluster reprises the Longhorn name at TACC (the original Longhorn, a GPU cluster outfitted with Quadro FX 5800 parts, was decommissioned in 2014). Frontera’s two GPU subsystems will target artificial intelligence, machine learning, and molecular dynamics research.

In the coming months, Frontera will also be integrating with cloud providers Amazon, Google, and Microsoft to provide researchers access to a range of emerging computing technologies and long-term storage. “Cloud is not an either/or decision, they don’t really do the same thing,” Stanzione said at the Rice Oil and Gas conference in March, referring to traditional on-prem HPC and cloud. “We are bringing in the cloud to use the things the cloud does well on, publishing data, and access to composable workflows, things like natural language processing. And also to play with the latest gear, FPGAs, Tensor Processors, etc., and see what the users want.”

Since entering early science operations the first week of July, Frontera has supported 39 science projects from across the NSF space and Stanzione expects that number to expand to about 100. As NSF’s leadership-class “tier 1” system, the follow-on to Blue Waters at the National Center for Supercomputing Applications, Frontera’s mission is to provide open science projects with significant system time; some projects are at the scale where they require 5 percent of the machine’s time in a year, for example. Smaller projects will be kept on Stampede2.

Frontera will run for at least five years; 80 percent of cycles are selected through a competitive process, while 20 percent are discretionary. Frontera will support high-impact science in nearly every domain. Early workloads include astrophysics, quantum chemistry, photovoltaic materials research, machine learning – and just this past week hurricane modeling.

TACC has been working with the storm research community for about a decade and has discretionary allocation time for just this kind of emergency, seasonal workload. “They call us when there’s a storm, and usually, we’re able to let them on,” said Stanzione. “Obviously, these forecasts are much less useful two or three days from now. So we just give them a chunk of time, wherever, wherever we have the space.”

As Hurricane Dorian was still gaining strength over the Atlantic last week, TACC provided a discretionary allocation for researchers Clint Dawson (University of Texas at Austin) and Jason Fleming (University of North Carolina), to carry out storm surge forecasting on the hurricane that reached category-5 status on Sunday using both Stampede2 and Frontera.

The researchers were able to get their code up in running on Frontera in about 10 minutes due to how similar Frontera is to Stampede2 with respect to its software stack and architecture — and they achieved twice the speed on the same number of nodes, Stanzione told us. Some of this speedup is attributable to the fact that they had a fairly quiet system to run on, so less contention for I/O and other resources. More generally, Stanzione is seeing a 10-15 percent performance uplift moving from Skylake to Cascade Lake, with up to a 30 percent improvement on codes that aren’t memory bandwidth bound.

The Intel security mitigations (that address side channel attack vulnerabilities, Spectre and Meltdown, et al.), haven’t impacted TACC very significantly, according to Stanzione. With the Skylake-based Stampede2 nodes, at most they saw up to a 10 percent hit on data intensive workloads with a lot of small I/O, but for the majority of floating point bound simulation codes, the performance penalty was around 1-2 percent. With the new hardware mitigations on Cascade Lake, TACC is not able to conduct direct with-and-without comparisons, but given codes are hitting the projected performance targets, Stanzione believes that if there is an impact, it’s minor.

TACC will also be deploying a small fleet of Optane nodes as part of the Frontera project: 16 quad-socket nodes filled with the 256 GB Optane Persistent Memory Modules — that’s six per socket, 24 per node, for an aggregate of more than 98 TB of Optane memory.

TACC’s engineers will be experimenting with the Optane DIMMs in both “I/O mode” and memory mode, using it for in-memory database applications, and to boost fault tolerance for check pointing. “We haven’t decided if we like it better as a fast storage node or a sort of a slow but really large memory node because it’s sort of a hybrid between storage and memory in a lot of ways. So we’ll have a hundred terabytes, 16 of these broad-socket nodes, and we’ll see what users want to do with it,” said Stanzione.

A phase-2 NSF leadership system that is 10x the capacity of Frontera is on the roadmap for 2024 deployment, which will be after the DOE Frontier (ORNL) and El Capitan (LLNL) machines are up and running. “Five year planning is more in the style that DOE usually gets to do,” Stanzione has said. This longer lead time allows TACC and its NSF collaborators to gather data and thoughtfully plan what makes sense for the second half of the 2020s. They’ll have a BOF at SC this year to start getting feedback and will begin working on a conceptual design next year, drawing on the lessons learned from Frontera and its subsystems, and as always listening closely to their end user scientific community, whom Stanzione continuously references throughout our nearly hour-long conversation.

This community-needs focus came up again when we talked about the decision to go with a straight x86 machine (plus smaller GPU subsystems), even though in the U.S. at least extreme-scale architectures have been trending toward fat GPU-node systems. (See five DOE CORAL awards, Perlmutter at NERSC, Big Red 2 at Indiana University, to name a few. There are of course notable exceptions to the fat-node approach, especially internationally, e.g., SuperMUC-NG at LRZ and the upcoming post-K Arm “Fugaku” system at RIKEN. For the record, Stanzione is intrigued by Arm and the Fujitsu post-K chip, specifically.)

“It helps that in the DOE space, most of the codes are C++. They can compel the developers to go the direction they want to go, and they use templating libraries like Cocos and Raja to get performance out of those,” said Stanzione. “But, you know, if I told our community to do that, first of all, right now, none of the codes would work. And, you know, I don’t have two years to get to it, either. Most of those systems [that you mentioned] are around the 2021 timeframe. Assuming they can make the software switch — and they have lots of good reasons to think that they can — their community is just very different.”

In a bit of friendly posturing, Stanzione also said he expects that despite those [big GPU] systems having higher spec’d performance (peak and Linpack) and higher funding levels, there will be a set of codes for which Frontera will outrun systems like Summit and Sierra. “We’ll put our productivity per dollar up against any of them,” said Stanzione, “and I think there’ll be a set of problems, particularly some of the big adaptive mesh, partial differential equations type models, where I bet we can outrun them in just raw speed because those codes just aren’t really friendly to those fat nodes. If you take away the GPUs, then Summit’s essentially a 3,000 node machine of plain-old CPUs and we have a lot more (nodes) than that. So, I think we will find some problems over the next two or three months, where Frontera is the fastest machine in the world.”

Read more about the science Frontera will be enabling at: https://fronteraweb.tacc.utexas.edu/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently deputy director for the U.S. Department of Energy’s (DOE) Read more…

By Doug Black

Microsoft Azure Adds Graphcore’s IPU

November 15, 2019

Graphcore, the U.K. AI chip developer, is expanding collaboration with Microsoft to offer its intelligent processing units on the Azure cloud, making Microsoft the first large public cloud vendor to offer the IPU designe Read more…

By George Leopold

At SC19: What Is UrgentHPC and Why Is It Needed?

November 14, 2019

The UrgentHPC workshop, taking place Sunday (Nov. 17) at SC19, is focused on using HPC and real-time data for urgent decision making in response to disasters such as wildfires, flooding, health emergencies, and accidents. We chat with organizer Nick Brown, research fellow at EPCC, University of Edinburgh, to learn more. Read more…

By Tiffany Trader

China’s Tencent Server Design Will Use AMD Rome

November 13, 2019

Tencent, the Chinese cloud giant, said it would use AMD’s newest Epyc processor in its internally-designed server. The design win adds further momentum to AMD’s bid to erode rival Intel Corp.’s dominance of the glo Read more…

By George Leopold

NCSA Industry Conference Recap – Part 1

November 13, 2019

Industry Program Director Brendan McGinty welcomed guests to the annual National Center for Supercomputing Applications (NCSA) Industry Conference, October 8-10, on the University of Illinois campus in Urbana (UIUC). One hundred seventy from 40 organizations attended the invitation-only, two-day event. Read more…

By Elizabeth Leake, STEM-Trek

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server ch Read more…

By Tiffany Trader

SC19’s HPC Impact Showcase Chair: AI + HPC a ‘Speed Train’

November 16, 2019

This year’s chair of the HPC Impact Showcase at the SC19 conference in Denver is Lori Diachin, who has spent her career at the spearhead of HPC. Currently Read more…

By Doug Black

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel AI Summit: New ‘Keem Bay’ Edge VPU, AI Product Roadmap

November 12, 2019

At its AI Summit today in San Francisco, Intel touted a raft of AI training and inference hardware for deployments ranging from cloud to edge and designed to support organizations at various points of their AI journeys. The company revealed its Movidius Myriad Vision Processing Unit (VPU)... Read more…

By Doug Black

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new... Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This