Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

By Tiffany Trader

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially launched. The Dell EMC-built supercomputer spans 8,008 Mellanox HDR connected Xeon Platinum 8280 nodes, capable of 23.5 Linpack petaflops, making it the fastest academic supercomputer in the world. Frontera joins more than a dozen other TACC systems, including Stampede2, which is now the second fastest academic system in the U.S.

Ahead of today’s unveiling ceremony, which brought representatives from Intel, IBM, Nvidia, Mellanox, DDN and the National Science Foundation (NSF) to the University of Texas at Austin, HPCwire spoke with TACC Director Dan Stanzione about the science that’s already being enabled on Frontera, as well as other details of the $60-million NSF leadership computing award (announced last year), including two GPU-powered subsystems that are currently undergoing testing in preparation for production-readiness within the next couple of months.

TACC’s Frontera system, featuring 8,008 Dell EMC PowerEdge server nodes

The primary Frontera system is powered by Intel’s highest-bin SP Cascade Lake processors (the Xeon Platinum 8280s), interconnected with HDR-100 links to each node, and full 200 Gbps HDR links between leaf and core switches. Data Direct Networks contributed the main storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability). Frontera’s 90 racks leverage direct liquid cooling technology from CoolIT, enabling about twice as many racks in the same footprint as the recently retired Stampede1. Running Linpack (the system entered the June 2019 Top500 list at number five), Frontera’s Xeons never got above 50C so won’t be thermally constrained; unlike Stampede2, which hit temps of up to 85C on its Linpack run, Stanzione shared.

In August, TACC fielded two Frontera subsystems. One is a cluster comprised of 360 Nvidia Quadro RTX 5000 GPUs submerged in liquid coolant filled racks developed by GRC. The liquid cooling specialists–formerly known as Green Revolution Cooling–are also based in Austin and TACC deployed the first GRC prototype outside of the company’s lab back in 2009. The new six tank system (internally, it’s called Maverick) uses Mellanox HDR-100 networking and provides 4 petaflops of peak single-precision performance.

Stanzione revealed that the Quadro RTX nodes were brought in under a new single-precision academic program that Nvidia is launching that provides CUDA licensing support and maybe even some nice discounts for RTX family parts for academic sites (we are tracking down additional details and will report further soon).

TACC’s new Longhorn: an IBM Power9 cluster with 448 Nvidia V100 GPUs

TACC is also deploying an IBM Power9 subsystem with 448 V100 GPUs (in the 4:1 GPU-to-CPU configuration) offering a peak aggregate output of 3.5 double-precision petaflops. The InfiniBand-EDR connected cluster reprises the Longhorn name at TACC (the original Longhorn, a GPU cluster outfitted with Quadro FX 5800 parts, was decommissioned in 2014). Frontera’s two GPU subsystems will target artificial intelligence, machine learning, and molecular dynamics research.

In the coming months, Frontera will also be integrating with cloud providers Amazon, Google, and Microsoft to provide researchers access to a range of emerging computing technologies and long-term storage. “Cloud is not an either/or decision, they don’t really do the same thing,” Stanzione said at the Rice Oil and Gas conference in March, referring to traditional on-prem HPC and cloud. “We are bringing in the cloud to use the things the cloud does well on, publishing data, and access to composable workflows, things like natural language processing. And also to play with the latest gear, FPGAs, Tensor Processors, etc., and see what the users want.”

Since entering early science operations the first week of July, Frontera has supported 39 science projects from across the NSF space and Stanzione expects that number to expand to about 100. As NSF’s leadership-class “tier 1” system, the follow-on to Blue Waters at the National Center for Supercomputing Applications, Frontera’s mission is to provide open science projects with significant system time; some projects are at the scale where they require 5 percent of the machine’s time in a year, for example. Smaller projects will be kept on Stampede2.

Frontera will run for at least five years; 80 percent of cycles are selected through a competitive process, while 20 percent are discretionary. Frontera will support high-impact science in nearly every domain. Early workloads include astrophysics, quantum chemistry, photovoltaic materials research, machine learning – and just this past week hurricane modeling.

TACC has been working with the storm research community for about a decade and has discretionary allocation time for just this kind of emergency, seasonal workload. “They call us when there’s a storm, and usually, we’re able to let them on,” said Stanzione. “Obviously, these forecasts are much less useful two or three days from now. So we just give them a chunk of time, wherever, wherever we have the space.”

As Hurricane Dorian was still gaining strength over the Atlantic last week, TACC provided a discretionary allocation for researchers Clint Dawson (University of Texas at Austin) and Jason Fleming (University of North Carolina), to carry out storm surge forecasting on the hurricane that reached category-5 status on Sunday using both Stampede2 and Frontera.

The researchers were able to get their code up in running on Frontera in about 10 minutes due to how similar Frontera is to Stampede2 with respect to its software stack and architecture — and they achieved twice the speed on the same number of nodes, Stanzione told us. Some of this speedup is attributable to the fact that they had a fairly quiet system to run on, so less contention for I/O and other resources. More generally, Stanzione is seeing a 10-15 percent performance uplift moving from Skylake to Cascade Lake, with up to a 30 percent improvement on codes that aren’t memory bandwidth bound.

The Intel security mitigations (that address side channel attack vulnerabilities, Spectre and Meltdown, et al.), haven’t impacted TACC very significantly, according to Stanzione. With the Skylake-based Stampede2 nodes, at most they saw up to a 10 percent hit on data intensive workloads with a lot of small I/O, but for the majority of floating point bound simulation codes, the performance penalty was around 1-2 percent. With the new hardware mitigations on Cascade Lake, TACC is not able to conduct direct with-and-without comparisons, but given codes are hitting the projected performance targets, Stanzione believes that if there is an impact, it’s minor.

TACC will also be deploying a small fleet of Optane nodes as part of the Frontera project: 16 quad-socket nodes filled with the 256 GB Optane Persistent Memory Modules — that’s six per socket, 24 per node, for an aggregate of more than 98 TB of Optane memory.

TACC’s engineers will be experimenting with the Optane DIMMs in both “I/O mode” and memory mode, using it for in-memory database applications, and to boost fault tolerance for check pointing. “We haven’t decided if we like it better as a fast storage node or a sort of a slow but really large memory node because it’s sort of a hybrid between storage and memory in a lot of ways. So we’ll have a hundred terabytes, 16 of these broad-socket nodes, and we’ll see what users want to do with it,” said Stanzione.

A phase-2 NSF leadership system that is 10x the capacity of Frontera is on the roadmap for 2024 deployment, which will be after the DOE Frontier (ORNL) and El Capitan (LLNL) machines are up and running. “Five year planning is more in the style that DOE usually gets to do,” Stanzione has said. This longer lead time allows TACC and its NSF collaborators to gather data and thoughtfully plan what makes sense for the second half of the 2020s. They’ll have a BOF at SC this year to start getting feedback and will begin working on a conceptual design next year, drawing on the lessons learned from Frontera and its subsystems, and as always listening closely to their end user scientific community, whom Stanzione continuously references throughout our nearly hour-long conversation.

This community-needs focus came up again when we talked about the decision to go with a straight x86 machine (plus smaller GPU subsystems), even though in the U.S. at least extreme-scale architectures have been trending toward fat GPU-node systems. (See five DOE CORAL awards, Perlmutter at NERSC, Big Red 2 at Indiana University, to name a few. There are of course notable exceptions to the fat-node approach, especially internationally, e.g., SuperMUC-NG at LRZ and the upcoming post-K Arm “Fugaku” system at RIKEN. For the record, Stanzione is intrigued by Arm and the Fujitsu post-K chip, specifically.)

“It helps that in the DOE space, most of the codes are C++. They can compel the developers to go the direction they want to go, and they use templating libraries like Cocos and Raja to get performance out of those,” said Stanzione. “But, you know, if I told our community to do that, first of all, right now, none of the codes would work. And, you know, I don’t have two years to get to it, either. Most of those systems [that you mentioned] are around the 2021 timeframe. Assuming they can make the software switch — and they have lots of good reasons to think that they can — their community is just very different.”

In a bit of friendly posturing, Stanzione also said he expects that despite those [big GPU] systems having higher spec’d performance (peak and Linpack) and higher funding levels, there will be a set of codes for which Frontera will outrun systems like Summit and Sierra. “We’ll put our productivity per dollar up against any of them,” said Stanzione, “and I think there’ll be a set of problems, particularly some of the big adaptive mesh, partial differential equations type models, where I bet we can outrun them in just raw speed because those codes just aren’t really friendly to those fat nodes. If you take away the GPUs, then Summit’s essentially a 3,000 node machine of plain-old CPUs and we have a lot more (nodes) than that. So, I think we will find some problems over the next two or three months, where Frontera is the fastest machine in the world.”

Read more about the science Frontera will be enabling at: https://fronteraweb.tacc.utexas.edu/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Army Seeks AI Ground Truth

April 3, 2020

Deep neural networks are being mustered by U.S. military researchers to marshal new technology forces on the Internet of Battlefield Things. U.S. Army and industry researchers said this week they have developed a “c Read more…

By George Leopold

Piz Daint Tackles Marsquakes

April 3, 2020

Even as researchers use supercomputers to probe the mysteries of earthquakes here on Earth, others are setting their sights on quakes just a little farther away. Researchers at ETH Zürich in Switzerland have applied sup Read more…

By Oliver Peckham

HPC Career Notes: April 2020 Edition

April 2, 2020

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. Th Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatme Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This