Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season

By Tiffany Trader

September 3, 2019

Frontera, the NSF supercomputer installed at the Texas Advanced Computing Center (TACC) in June, passed its formal acceptance last week and is now officially launched. The Dell EMC-built supercomputer spans 8,008 Mellanox HDR connected Xeon Platinum 8280 nodes, capable of 23.5 Linpack petaflops, making it the fastest academic supercomputer in the world. Frontera joins more than a dozen other TACC systems, including Stampede2, which is now the second fastest academic system in the U.S.

Ahead of today’s unveiling ceremony, which brought representatives from Intel, IBM, Nvidia, Mellanox, DDN and the National Science Foundation (NSF) to the University of Texas at Austin, HPCwire spoke with TACC Director Dan Stanzione about the science that’s already being enabled on Frontera, as well as other details of the $60-million NSF leadership computing award (announced last year), including two GPU-powered subsystems that are currently undergoing testing in preparation for production-readiness within the next couple of months.

TACC’s Frontera system, featuring 8,008 Dell EMC PowerEdge server nodes

The primary Frontera system is powered by Intel’s highest-bin SP Cascade Lake processors (the Xeon Platinum 8280s), interconnected with HDR-100 links to each node, and full 200 Gbps HDR links between leaf and core switches. Data Direct Networks contributed the main storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability). Frontera’s 90 racks leverage direct liquid cooling technology from CoolIT, enabling about twice as many racks in the same footprint as the recently retired Stampede1. Running Linpack (the system entered the June 2019 Top500 list at number five), Frontera’s Xeons never got above 50C so won’t be thermally constrained; unlike Stampede2, which hit temps of up to 85C on its Linpack run, Stanzione shared.

In August, TACC fielded two Frontera subsystems. One is a cluster comprised of 360 Nvidia Quadro RTX 5000 GPUs submerged in liquid coolant filled racks developed by GRC. The liquid cooling specialists–formerly known as Green Revolution Cooling–are also based in Austin and TACC deployed the first GRC prototype outside of the company’s lab back in 2009. The new six tank system (internally, it’s called Maverick) uses Mellanox HDR-100 networking and provides 4 petaflops of peak single-precision performance.

Stanzione revealed that the Quadro RTX nodes were brought in under a new single-precision academic program that Nvidia is launching that provides CUDA licensing support and maybe even some nice discounts for RTX family parts for academic sites (we are tracking down additional details and will report further soon).

TACC’s new Longhorn: an IBM Power9 cluster with 448 Nvidia V100 GPUs

TACC is also deploying an IBM Power9 subsystem with 448 V100 GPUs (in the 4:1 GPU-to-CPU configuration) offering a peak aggregate output of 3.5 double-precision petaflops. The InfiniBand-EDR connected cluster reprises the Longhorn name at TACC (the original Longhorn, a GPU cluster outfitted with Quadro FX 5800 parts, was decommissioned in 2014). Frontera’s two GPU subsystems will target artificial intelligence, machine learning, and molecular dynamics research.

In the coming months, Frontera will also be integrating with cloud providers Amazon, Google, and Microsoft to provide researchers access to a range of emerging computing technologies and long-term storage. “Cloud is not an either/or decision, they don’t really do the same thing,” Stanzione said at the Rice Oil and Gas conference in March, referring to traditional on-prem HPC and cloud. “We are bringing in the cloud to use the things the cloud does well on, publishing data, and access to composable workflows, things like natural language processing. And also to play with the latest gear, FPGAs, Tensor Processors, etc., and see what the users want.”

Since entering early science operations the first week of July, Frontera has supported 39 science projects from across the NSF space and Stanzione expects that number to expand to about 100. As NSF’s leadership-class “tier 1” system, the follow-on to Blue Waters at the National Center for Supercomputing Applications, Frontera’s mission is to provide open science projects with significant system time; some projects are at the scale where they require 5 percent of the machine’s time in a year, for example. Smaller projects will be kept on Stampede2.

Frontera will run for at least five years; 80 percent of cycles are selected through a competitive process, while 20 percent are discretionary. Frontera will support high-impact science in nearly every domain. Early workloads include astrophysics, quantum chemistry, photovoltaic materials research, machine learning – and just this past week hurricane modeling.

TACC has been working with the storm research community for about a decade and has discretionary allocation time for just this kind of emergency, seasonal workload. “They call us when there’s a storm, and usually, we’re able to let them on,” said Stanzione. “Obviously, these forecasts are much less useful two or three days from now. So we just give them a chunk of time, wherever, wherever we have the space.”

As Hurricane Dorian was still gaining strength over the Atlantic last week, TACC provided a discretionary allocation for researchers Clint Dawson (University of Texas at Austin) and Jason Fleming (University of North Carolina), to carry out storm surge forecasting on the hurricane that reached category-5 status on Sunday using both Stampede2 and Frontera.

The researchers were able to get their code up in running on Frontera in about 10 minutes due to how similar Frontera is to Stampede2 with respect to its software stack and architecture — and they achieved twice the speed on the same number of nodes, Stanzione told us. Some of this speedup is attributable to the fact that they had a fairly quiet system to run on, so less contention for I/O and other resources. More generally, Stanzione is seeing a 10-15 percent performance uplift moving from Skylake to Cascade Lake, with up to a 30 percent improvement on codes that aren’t memory bandwidth bound.

The Intel security mitigations (that address side channel attack vulnerabilities, Spectre and Meltdown, et al.), haven’t impacted TACC very significantly, according to Stanzione. With the Skylake-based Stampede2 nodes, at most they saw up to a 10 percent hit on data intensive workloads with a lot of small I/O, but for the majority of floating point bound simulation codes, the performance penalty was around 1-2 percent. With the new hardware mitigations on Cascade Lake, TACC is not able to conduct direct with-and-without comparisons, but given codes are hitting the projected performance targets, Stanzione believes that if there is an impact, it’s minor.

TACC will also be deploying a small fleet of Optane nodes as part of the Frontera project: 16 quad-socket nodes filled with the 256 GB Optane Persistent Memory Modules — that’s six per socket, 24 per node, for an aggregate of more than 98 TB of Optane memory.

TACC’s engineers will be experimenting with the Optane DIMMs in both “I/O mode” and memory mode, using it for in-memory database applications, and to boost fault tolerance for check pointing. “We haven’t decided if we like it better as a fast storage node or a sort of a slow but really large memory node because it’s sort of a hybrid between storage and memory in a lot of ways. So we’ll have a hundred terabytes, 16 of these broad-socket nodes, and we’ll see what users want to do with it,” said Stanzione.

A phase-2 NSF leadership system that is 10x the capacity of Frontera is on the roadmap for 2024 deployment, which will be after the DOE Frontier (ORNL) and El Capitan (LLNL) machines are up and running. “Five year planning is more in the style that DOE usually gets to do,” Stanzione has said. This longer lead time allows TACC and its NSF collaborators to gather data and thoughtfully plan what makes sense for the second half of the 2020s. They’ll have a BOF at SC this year to start getting feedback and will begin working on a conceptual design next year, drawing on the lessons learned from Frontera and its subsystems, and as always listening closely to their end user scientific community, whom Stanzione continuously references throughout our nearly hour-long conversation.

This community-needs focus came up again when we talked about the decision to go with a straight x86 machine (plus smaller GPU subsystems), even though in the U.S. at least extreme-scale architectures have been trending toward fat GPU-node systems. (See five DOE CORAL awards, Perlmutter at NERSC, Big Red 2 at Indiana University, to name a few. There are of course notable exceptions to the fat-node approach, especially internationally, e.g., SuperMUC-NG at LRZ and the upcoming post-K Arm “Fugaku” system at RIKEN. For the record, Stanzione is intrigued by Arm and the Fujitsu post-K chip, specifically.)

“It helps that in the DOE space, most of the codes are C++. They can compel the developers to go the direction they want to go, and they use templating libraries like Cocos and Raja to get performance out of those,” said Stanzione. “But, you know, if I told our community to do that, first of all, right now, none of the codes would work. And, you know, I don’t have two years to get to it, either. Most of those systems [that you mentioned] are around the 2021 timeframe. Assuming they can make the software switch — and they have lots of good reasons to think that they can — their community is just very different.”

In a bit of friendly posturing, Stanzione also said he expects that despite those [big GPU] systems having higher spec’d performance (peak and Linpack) and higher funding levels, there will be a set of codes for which Frontera will outrun systems like Summit and Sierra. “We’ll put our productivity per dollar up against any of them,” said Stanzione, “and I think there’ll be a set of problems, particularly some of the big adaptive mesh, partial differential equations type models, where I bet we can outrun them in just raw speed because those codes just aren’t really friendly to those fat nodes. If you take away the GPUs, then Summit’s essentially a 3,000 node machine of plain-old CPUs and we have a lot more (nodes) than that. So, I think we will find some problems over the next two or three months, where Frontera is the fastest machine in the world.”

Read more about the science Frontera will be enabling at: https://fronteraweb.tacc.utexas.edu/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire