Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

By John Russell

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. Last month Delft University researchers described a potential quantum networking stack with a detailed proposal for a link layer protocol – all necessary for creating a quantum internet. Meanwhile Rigetti Computing is taking advantage of the one year anniversary of its cloud platform launch and announcement of a $1M prize for achieving quantum advantage to update media on progress.

While not blockbusters the activities reflect the steady pace of advance in quantum research. We’ll start with IBM but first mention that there’s been no winner yet in the Rigetti challenge (not really unexpected) and that developing a real quantum networking stack will be a big deal but remains far off. The Delft work is an important step forward.

IBM Goes Back to School

IBM’s latest offerings, announced in a blog by Jay Gambetta, IBM Fellow and quantum scientist, and Abraham Asfaw, IBM global lead of quantum education, are largely aimed at academia and intended to further seed growth in the quantum developer community.

Indeed all of the quantum computing hopefuls are seeking ways to spur ecosystem growth and IBM has been at the forefront. The IBM Q Experience was the first quantum computer accessed via the cloud (2016) and has gained 155,000 registered users since. Its software stack/developer kit, Qiskit, has more than 235,000 downloads and IBM Q users have already run over 28 million experiments and simulations. Notably, more than 190 papers have been written by non-IBMers related to quantum computing using the IBM Q systems.

Here’s a snapshot of the new resources:

  • Open-Source TextbookExplores quantum computing through practical problem sets run on real quantum systems, helping university students connect theory to practice.
  • Coding With QiskitAn approachable video series about quantum software that visually engages students through the hardest part of developing new language skills—the beginning! Students can learn quantum programming basics at their own pace with host, IBM Q developer advocate Abe Asfaw.
  • University Hackathon Partnership Program: Universities can partner with our teams to host a hands-on, collaborative Qiskit experience for eager quantum computing students.
  • New IBM Q Experience Systems: new quantum devices available over the cloud offer IBM Q Experience for Researcher program participants, and IBM Q Network organizations a scheduling feature for their experiments, educational demonstrations and

Bob Sutor, IBM VP of IBM Q Strategy and Ecosystem, briefed HPCwire on the new educational resources.

“The open source textbook (Learn Quantum Computation Using Qiskit) is going to be available to anybody,” said Sutor. “It’s licensed under the Apache to license, and it will evolve over time to explain the principles of quantum computing, with actual code that runs systems. So we’re introducing this now.

“For the videos, we have a very dynamic young researcher (Abraham Asfaw) who he is doing them, and they’re prepared by a larger team. He is a relatively new Ph.D. out of Princeton, and in a very informal but absolutely technically correct way, he’s introducing how you get up and running. The plan is there to introduce these videos about once a week until we cover the core material.”

Hackathons, of course, are nothing new but ramping up a Hackathon program for quantum computing is interesting. It makes quantum computing look more and more mainstream, at least given QC’s early stage. Although not mentioned in the blogpost, Sutor said IBM also plans to expand its quantum camps program aimed at graduate students.

“In a somewhat more formal away we’re going to continue with camps. These are typically three- or four-day workshops. We did one in in Vermont earlier this year and we have three coming up, one in Europe in Zurich, in a couple of weeks, another in Tokyo in mid-November, and one in Johannesburg in December. They are invitation only in the sense that we want graduate students who are recommended by professors,” said Sutor.

On the order of 22 universities are already affiliated with the IBM Q Network in one or another way according to Sutor who is hoping the outreach efforts send those numbers much higher. “We would love to quadruple them,” he said.

While today’s news focused on academia IBM’s broad goal is commercialization of QC. “At the core, quantum computing is a commercial program for IBM and everything we’ve done is focused on getting to quantum advantage as quickly as possible. This means having the hardware and the software and the systems and the people, writing the algorithms, working on the use cases, fundamentally, just understanding quantum computing.”

Delft Researchers Propose a Quantum Network Protocol Stack

Delft University Researchers, led by Stephanie Wehner, presented a rich paper (A Link Layer Protocol for Quantum Networks) at the recent ACM SIGCOMM conference examining the challenges facing building a quantum communication network stack. There has been lost of activity around quantum-based communications.

So far the efforts have been relatively modest but distances are growing. In their paper, the researchers note short-lived entanglement has been produced probabilistically over “short distances (100 km) on the ground by sending photons over standard telecom fiber as well as from space over 1203 km from a satellite.” These point-to-point communication successes are impressive but can only prepare and measure single qubits and cannot by be concatenated to allow the transmission of qubits over longer distances.

Among the technology needs for effective quantum networking is a robust networking stack whose protocols are specifically designed for quantum.

Here’s a brief excerpt from the paper:

“We take the first step from a physics experiment to a quantum internet system. We propose a functional allocation of a quantum network stack, and construct the first physical and link layer protocols that turn ad-hoc physics experiments producing heralded entanglement between quantum processors into a well-defined and robust service. This lays the groundwork for designing and implementing scalable control and application protocols in platform-independent software.

“To design our protocol, we identify use cases, as well as fundamental and technological design considerations of quantum network hardware, illustrated by considering the state-of-the-art quantum processor platform available to us (Nitrogen-Vacancy (NV) centers in diamond.”

Not surprisingly classical network protocols don’t transfer to quantum. Among the many challenges in any quantum networking scheme is determining whether or not a pair of qubits travelling through the network are entangled. There are approaches to doing this. Wehner and her colleagues discuss an approach called heralded entanglement generation that generates a heralding signal that can be sent between node to confirm entanglement. Their work is fairly detailed examination of issues, use cases, and in the case of the link layer, a specific proposal to build upon.

Here’s outline of the proposed stack elements excerpted from their paper:

  • “Physical layer. This layer is realized by the actual quantum hardware devices and physical connections such as fibers. We take the physical layer to contain no decision-making elements and keep no state about the production of entanglement (or the transmissions of qubits). The hardware at the physical layer is responsible for timing synchronization and other synchronization, such as laser phase stabilization [47], required to make attempts to produce heralded entanglement.
  • “Link layeris [used] then to turn the physical layer making entanglement attempts into a robust entanglement generation service, that can produce entanglement between controllable quantum nodes connected by an (chain of) automated quantum node. Requests can be made by higher layers to the link layer to produce entanglement, where robust means that the link layer endows the physical system with additional guarantees: a request for entanglement generation will (eventually) be fulfilled or result in a time-out.
  • “Network layer is responsible for producing long-distance entanglement between nodes that are neither connected directly, nor connected by a chain of automated quantum nodes at the physical layer. This may be achieved by means of entanglement swapping, using the link layer to generate entanglement between neighboring controllable nodes. In addition, it contains an entanglement manager that keeps track of entanglement in the network, and which may choose to pre- generate entanglement to service later requests from higher layers.
  • “Transport layer takes responsibility for transmitting qubits deterministically (e.g. using teleportation). One may question why this warrants a separate layer, rather than a library. Use of a dedicated layer allows two nodes to pre-share entanglement that is used as applications of the system demand it. Here, entanglement is not assigned to one specific application. This potentially increases the throughput of qubit transmission via teleportation, as teleportation requires no additional connection negotiation, but only forward communication from a sender to the receiver.”

There’s a lot to unpack here and the paper is best read directly. In an account of the work posted on Delft web site Wehner said, “Currently, qubits cannot be kept in memory for very long. This means control decisions on what to do with them need to be taken very quickly. By creating this link layer protocol, we have overcome obstacles presented by some very demanding physics.”

Recognizing a great deal of work still needs to be done, the researchers nevertheless sound a positive note in their conclusion, “Our top down inventory of design requirements, combined with a bottom up approach based on actual quantum hardware allowed us to take quantum networks a step further on the long path towards their large-scale realization. Our work paves the way towards the next step, a robust network layer control protocol. The link layer may now be used as a robust service without detailed knowledge of the physics of the devices.”

Rigetti Doubles Down on Leveraging Hybrid Approach

Almost exactly one year ago Rigetti Computing introduced its Quantum Cloud Service (QCS) platform which emphasize optimizing a hybrid quantum-classical approach in the race to achieve quantum advantage. QA is the idea that at some point quantum computers will perform some applications sufficiently better than classical systems to warrant switching. Rigetti also introduced $1 million prize for the first person to achieve QA using its platform. (see HPCwire article, Rigetti (and Others) Pursuit of Quantum Advantage)

This week Rigetti’s SVP of Engineering and Product, David Rivas, spoke with HPCwire to provide an update. Rigetti emphasizes its commitment to optimizing hybrid quantum-classical computing and describes itself as a “full stack” company meaning it controls all critical elements, and among other things intentional optimizes for the hybrid quantum-classical style of quantum computing likely to succeed near-term.

Hybrid is a word frequently bandied about in connection with quantum computing and really it has two meanings.

  • In practical terms you can’t do quantum computing without classical computing. Think of classical computing as a kind of envelope around all quantum systems that is necessary to get data in out of the system and to control the system. Also, since the quantum machine’s answers are probabilistic, classical systems are needed to convert output into definite answers. In this sense, all quantum computers are ‘hybrid systems’ and require classical systems for basic tasks.
  • The second meaning has to do with how we process quantum algorithms. Trying to run these algorithms to solve large problems on today’s low qubit-count machines is impractically resource intensive (for example, extra qubits for error or memory). By breaking the algorithms into pieces, it’s possible to run the portions of the algorithm which require quantum properties on the quantum processor – or put another way make the best use of quantum properties – and to run other portions on a classical computer. Since quantum answers are probabilistic, the loop between the quantum processor and the classical system is typically repeated many times before eventually converging on a solution.

Clever design and use of these hybrid algorithms are what is expected to enable today’s imperfect, low qubit-count quantum machines to do useful work.

“Near term, it’s going to be those kinds of algorithms that we think are going to take us towards quantum advantage, ones where the quantum processor is performing a task that is uniquely difficult to do in a classical environment, but which the quantum processor is itself uniquely capable doing very quickly. But the classical and quantum components are deeply intertwined,” said Rivas.

Maximizing the efficient running of these hybrid algorithms is a Rigetti emphasis. For example, latencies in communication between the quantum processor and classical system can be problematic. This is especially so when accessing a quantum system by a web portal where the two systems are remote from each other as was the case initially for users accessing to Rigetti’s quantum system via an API. That changed when QCS was launched.

“We decided there were two major improvements we could make. The most dramatic is colocation. We put the classical resources very close, both physically and network connectivity, to the quantum resource. By doing this, we decrease the latencies by one or two orders of magnitude. What would take minutes takes seconds or less,” said Rivas.

It also turns out that for many important quantum algorithm – particularly the Variational-Quantum-Eigensolver (VQE) – tuning the parameters is important as the calculation proceeds.

Rigetti added automated support for parametrization. “You have an inner loop, a quantum circuit that you want to run, and then you have an optimization [tuning parameters] that is performed classically. The innovation here was to support the notion of parameterizing circuits [in a way] that you remove the compilation step and the transmission of the circuit stuff from the actual communication between the classical and the quantum program,” said Rivas.

A third advance involves systems reset.  Generally, after quantum processor runs a circuit it needs to be reset to a known state. The traditional way of doing this is to sort of just wait for the processor settle. Rigetti implemented an active reset which speeds the process – “The technical detail here is we run a very small circuit a number of times to set that cubits into a known state, but we do it efficiently and at the control level.”

Rivas said, “The combination of these things, the colocation, the parameterizing, and the active reset has resulted in a 30X and 50X performance increases for these kinds of applications.”

Progress in build bigger quantum processors has been somewhat slower. The goal cited at the time of the cloud platform launch was to reach 128 qubit processors in roughly a year.

“We’re certainly on a path towards 100-plus qubit, but it probably won’t appear that by the end of this year. We have successfully running now, 32 qubits in our lab and close to production. The important that we’re doing there is we’re driving our noise metrics very, very low. I don’t think we’re yet announcing numbers associated with that, but the intention here is to is to focus on both the number of cubits and the overall specifications associated with qubit,” said Rivas.

Feature image: Using the link layer protocol, higher-layer software can request the creation of entanglement without needing to know which quantum hardware system is in the box.
Image credit QuTech/Scixel.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This