Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

By John Russell

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. Last month Delft University researchers described a potential quantum networking stack with a detailed proposal for a link layer protocol – all necessary for creating a quantum internet. Meanwhile Rigetti Computing is taking advantage of the one year anniversary of its cloud platform launch and announcement of a $1M prize for achieving quantum advantage to update media on progress.

While not blockbusters the activities reflect the steady pace of advance in quantum research. We’ll start with IBM but first mention that there’s been no winner yet in the Rigetti challenge (not really unexpected) and that developing a real quantum networking stack will be a big deal but remains far off. The Delft work is an important step forward.

IBM Goes Back to School

IBM’s latest offerings, announced in a blog by Jay Gambetta, IBM Fellow and quantum scientist, and Abraham Asfaw, IBM global lead of quantum education, are largely aimed at academia and intended to further seed growth in the quantum developer community.

Indeed all of the quantum computing hopefuls are seeking ways to spur ecosystem growth and IBM has been at the forefront. The IBM Q Experience was the first quantum computer accessed via the cloud (2016) and has gained 155,000 registered users since. Its software stack/developer kit, Qiskit, has more than 235,000 downloads and IBM Q users have already run over 28 million experiments and simulations. Notably, more than 190 papers have been written by non-IBMers related to quantum computing using the IBM Q systems.

Here’s a snapshot of the new resources:

  • Open-Source TextbookExplores quantum computing through practical problem sets run on real quantum systems, helping university students connect theory to practice.
  • Coding With QiskitAn approachable video series about quantum software that visually engages students through the hardest part of developing new language skills—the beginning! Students can learn quantum programming basics at their own pace with host, IBM Q developer advocate Abe Asfaw.
  • University Hackathon Partnership Program: Universities can partner with our teams to host a hands-on, collaborative Qiskit experience for eager quantum computing students.
  • New IBM Q Experience Systems: new quantum devices available over the cloud offer IBM Q Experience for Researcher program participants, and IBM Q Network organizations a scheduling feature for their experiments, educational demonstrations and

Bob Sutor, IBM VP of IBM Q Strategy and Ecosystem, briefed HPCwire on the new educational resources.

“The open source textbook (Learn Quantum Computation Using Qiskit) is going to be available to anybody,” said Sutor. “It’s licensed under the Apache to license, and it will evolve over time to explain the principles of quantum computing, with actual code that runs systems. So we’re introducing this now.

“For the videos, we have a very dynamic young researcher (Abraham Asfaw) who he is doing them, and they’re prepared by a larger team. He is a relatively new Ph.D. out of Princeton, and in a very informal but absolutely technically correct way, he’s introducing how you get up and running. The plan is there to introduce these videos about once a week until we cover the core material.”

Hackathons, of course, are nothing new but ramping up a Hackathon program for quantum computing is interesting. It makes quantum computing look more and more mainstream, at least given QC’s early stage. Although not mentioned in the blogpost, Sutor said IBM also plans to expand its quantum camps program aimed at graduate students.

“In a somewhat more formal away we’re going to continue with camps. These are typically three- or four-day workshops. We did one in in Vermont earlier this year and we have three coming up, one in Europe in Zurich, in a couple of weeks, another in Tokyo in mid-November, and one in Johannesburg in December. They are invitation only in the sense that we want graduate students who are recommended by professors,” said Sutor.

On the order of 22 universities are already affiliated with the IBM Q Network in one or another way according to Sutor who is hoping the outreach efforts send those numbers much higher. “We would love to quadruple them,” he said.

While today’s news focused on academia IBM’s broad goal is commercialization of QC. “At the core, quantum computing is a commercial program for IBM and everything we’ve done is focused on getting to quantum advantage as quickly as possible. This means having the hardware and the software and the systems and the people, writing the algorithms, working on the use cases, fundamentally, just understanding quantum computing.”

Delft Researchers Propose a Quantum Network Protocol Stack

Delft University Researchers, led by Stephanie Wehner, presented a rich paper (A Link Layer Protocol for Quantum Networks) at the recent ACM SIGCOMM conference examining the challenges facing building a quantum communication network stack. There has been lost of activity around quantum-based communications.

So far the efforts have been relatively modest but distances are growing. In their paper, the researchers note short-lived entanglement has been produced probabilistically over “short distances (100 km) on the ground by sending photons over standard telecom fiber as well as from space over 1203 km from a satellite.” These point-to-point communication successes are impressive but can only prepare and measure single qubits and cannot by be concatenated to allow the transmission of qubits over longer distances.

Among the technology needs for effective quantum networking is a robust networking stack whose protocols are specifically designed for quantum.

Here’s a brief excerpt from the paper:

“We take the first step from a physics experiment to a quantum internet system. We propose a functional allocation of a quantum network stack, and construct the first physical and link layer protocols that turn ad-hoc physics experiments producing heralded entanglement between quantum processors into a well-defined and robust service. This lays the groundwork for designing and implementing scalable control and application protocols in platform-independent software.

“To design our protocol, we identify use cases, as well as fundamental and technological design considerations of quantum network hardware, illustrated by considering the state-of-the-art quantum processor platform available to us (Nitrogen-Vacancy (NV) centers in diamond.”

Not surprisingly classical network protocols don’t transfer to quantum. Among the many challenges in any quantum networking scheme is determining whether or not a pair of qubits travelling through the network are entangled. There are approaches to doing this. Wehner and her colleagues discuss an approach called heralded entanglement generation that generates a heralding signal that can be sent between node to confirm entanglement. Their work is fairly detailed examination of issues, use cases, and in the case of the link layer, a specific proposal to build upon.

Here’s outline of the proposed stack elements excerpted from their paper:

  • “Physical layer. This layer is realized by the actual quantum hardware devices and physical connections such as fibers. We take the physical layer to contain no decision-making elements and keep no state about the production of entanglement (or the transmissions of qubits). The hardware at the physical layer is responsible for timing synchronization and other synchronization, such as laser phase stabilization [47], required to make attempts to produce heralded entanglement.
  • “Link layeris [used] then to turn the physical layer making entanglement attempts into a robust entanglement generation service, that can produce entanglement between controllable quantum nodes connected by an (chain of) automated quantum node. Requests can be made by higher layers to the link layer to produce entanglement, where robust means that the link layer endows the physical system with additional guarantees: a request for entanglement generation will (eventually) be fulfilled or result in a time-out.
  • “Network layer is responsible for producing long-distance entanglement between nodes that are neither connected directly, nor connected by a chain of automated quantum nodes at the physical layer. This may be achieved by means of entanglement swapping, using the link layer to generate entanglement between neighboring controllable nodes. In addition, it contains an entanglement manager that keeps track of entanglement in the network, and which may choose to pre- generate entanglement to service later requests from higher layers.
  • “Transport layer takes responsibility for transmitting qubits deterministically (e.g. using teleportation). One may question why this warrants a separate layer, rather than a library. Use of a dedicated layer allows two nodes to pre-share entanglement that is used as applications of the system demand it. Here, entanglement is not assigned to one specific application. This potentially increases the throughput of qubit transmission via teleportation, as teleportation requires no additional connection negotiation, but only forward communication from a sender to the receiver.”

There’s a lot to unpack here and the paper is best read directly. In an account of the work posted on Delft web site Wehner said, “Currently, qubits cannot be kept in memory for very long. This means control decisions on what to do with them need to be taken very quickly. By creating this link layer protocol, we have overcome obstacles presented by some very demanding physics.”

Recognizing a great deal of work still needs to be done, the researchers nevertheless sound a positive note in their conclusion, “Our top down inventory of design requirements, combined with a bottom up approach based on actual quantum hardware allowed us to take quantum networks a step further on the long path towards their large-scale realization. Our work paves the way towards the next step, a robust network layer control protocol. The link layer may now be used as a robust service without detailed knowledge of the physics of the devices.”

Rigetti Doubles Down on Leveraging Hybrid Approach

Almost exactly one year ago Rigetti Computing introduced its Quantum Cloud Service (QCS) platform which emphasize optimizing a hybrid quantum-classical approach in the race to achieve quantum advantage. QA is the idea that at some point quantum computers will perform some applications sufficiently better than classical systems to warrant switching. Rigetti also introduced $1 million prize for the first person to achieve QA using its platform. (see HPCwire article, Rigetti (and Others) Pursuit of Quantum Advantage)

This week Rigetti’s SVP of Engineering and Product, David Rivas, spoke with HPCwire to provide an update. Rigetti emphasizes its commitment to optimizing hybrid quantum-classical computing and describes itself as a “full stack” company meaning it controls all critical elements, and among other things intentional optimizes for the hybrid quantum-classical style of quantum computing likely to succeed near-term.

Hybrid is a word frequently bandied about in connection with quantum computing and really it has two meanings.

  • In practical terms you can’t do quantum computing without classical computing. Think of classical computing as a kind of envelope around all quantum systems that is necessary to get data in out of the system and to control the system. Also, since the quantum machine’s answers are probabilistic, classical systems are needed to convert output into definite answers. In this sense, all quantum computers are ‘hybrid systems’ and require classical systems for basic tasks.
  • The second meaning has to do with how we process quantum algorithms. Trying to run these algorithms to solve large problems on today’s low qubit-count machines is impractically resource intensive (for example, extra qubits for error or memory). By breaking the algorithms into pieces, it’s possible to run the portions of the algorithm which require quantum properties on the quantum processor – or put another way make the best use of quantum properties – and to run other portions on a classical computer. Since quantum answers are probabilistic, the loop between the quantum processor and the classical system is typically repeated many times before eventually converging on a solution.

Clever design and use of these hybrid algorithms are what is expected to enable today’s imperfect, low qubit-count quantum machines to do useful work.

“Near term, it’s going to be those kinds of algorithms that we think are going to take us towards quantum advantage, ones where the quantum processor is performing a task that is uniquely difficult to do in a classical environment, but which the quantum processor is itself uniquely capable doing very quickly. But the classical and quantum components are deeply intertwined,” said Rivas.

Maximizing the efficient running of these hybrid algorithms is a Rigetti emphasis. For example, latencies in communication between the quantum processor and classical system can be problematic. This is especially so when accessing a quantum system by a web portal where the two systems are remote from each other as was the case initially for users accessing to Rigetti’s quantum system via an API. That changed when QCS was launched.

“We decided there were two major improvements we could make. The most dramatic is colocation. We put the classical resources very close, both physically and network connectivity, to the quantum resource. By doing this, we decrease the latencies by one or two orders of magnitude. What would take minutes takes seconds or less,” said Rivas.

It also turns out that for many important quantum algorithm – particularly the Variational-Quantum-Eigensolver (VQE) – tuning the parameters is important as the calculation proceeds.

Rigetti added automated support for parametrization. “You have an inner loop, a quantum circuit that you want to run, and then you have an optimization [tuning parameters] that is performed classically. The innovation here was to support the notion of parameterizing circuits [in a way] that you remove the compilation step and the transmission of the circuit stuff from the actual communication between the classical and the quantum program,” said Rivas.

A third advance involves systems reset.  Generally, after quantum processor runs a circuit it needs to be reset to a known state. The traditional way of doing this is to sort of just wait for the processor settle. Rigetti implemented an active reset which speeds the process – “The technical detail here is we run a very small circuit a number of times to set that cubits into a known state, but we do it efficiently and at the control level.”

Rivas said, “The combination of these things, the colocation, the parameterizing, and the active reset has resulted in a 30X and 50X performance increases for these kinds of applications.”

Progress in build bigger quantum processors has been somewhat slower. The goal cited at the time of the cloud platform launch was to reach 128 qubit processors in roughly a year.

“We’re certainly on a path towards 100-plus qubit, but it probably won’t appear that by the end of this year. We have successfully running now, 32 qubits in our lab and close to production. The important that we’re doing there is we’re driving our noise metrics very, very low. I don’t think we’re yet announcing numbers associated with that, but the intention here is to is to focus on both the number of cubits and the overall specifications associated with qubit,” said Rivas.

Feature image: Using the link layer protocol, higher-layer software can request the creation of entanglement without needing to know which quantum hardware system is in the box.
Image credit QuTech/Scixel.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that announcing key server wins, important cloud provider wins Read more…

By John Russell

Dell’s AMD-Powered Server Line Targets High-End Jobs

September 17, 2019

Dell Technologies rolled out five new servers this week based on AMD’s latest Epyc processor that are geared toward data-driven workloads running on increasingly popular multi-cloud platforms as well as in the HPC data Read more…

By George Leopold

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

AWS Solution Channel

A Guide to Discovering the Best AWS Instances and Configurations for Your HPC Workload

The flexibility and heterogeneity of HPC cloud services provide a welcome contrast to the constraints of on-premises HPC. Every HPC configuration is potentially accessible to any given workload in a well-resourced cloud HPC deployment, with vast scalability to spin up as much compute as that workload demands in any given moment. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Rumors of My Death Are Still Exaggerated: The Mainframe

[Connect with Spectrum users and learn new skills in the IBM Spectrum LSF User Community.]

As of 2017, 92 of the world’s top 100 banks used mainframes. Read more…

Better Scientific Software: Turn Your Passion into Cash

September 13, 2019

Do you know your way around scientific software and programming? You think you can contribute to the community by making scientific software better? If so, then the Better Scientific Software (BSSW) organization wants yo Read more…

By Dan Olds

When in Rome: AMD Announces New Epyc CPU for HPC, Server and Cloud Wins

September 18, 2019

Where else but Rome could AMD hold the official Europe launch party for its second generation of Epyc microprocessors, codenamed Rome. Today, AMD did just that Read more…

By John Russell

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

IDAS: ‘Automagic’ HPC With Training Wheels

September 12, 2019

High-performance computing (HPC) for research is notorious for having steep barriers to entry. For this reason, high-tech disciplines were early adopters, have Read more…

By Elizabeth Leake

Univa Brings Cloud Automation to Slurm Users with Navops Launch 2.0

September 11, 2019

Univa, the company behind Grid Engine, announced today its HPC cloud-automation platform NavOps Launch will support the popular open-source workload scheduler Slurm. With the release of NavOps Launch 2.0, “Slurm users will have access to the same cloud automation capabilities... Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 petefl Read more…

By John Russell

Quantum Roundup: IBM Goes to School, Delft Tackles Networking, Rigetti Updates

September 5, 2019

IBM today announced a new open source quantum ‘textbook’, a series of quantum education videos, and plans to expand its nascent quantum hackathon program. L Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This