Eyes on the Prize: TACC’s Frontera Quickly Ramps up Science Agenda

By John Russell

September 9, 2019

Announced a year ago and officially launched a week ago, the Texas Advanced Computing Center’s Frontera – now the fastest academic supercomputer (~25 peteflops, Linpack) – is already establishing an aggressive agenda as early-science teams prepare to port their scientific codes. TACC announced a few details of early science projects for Frontera spanning medicine, cosmology, energy research, quantum chemistry, and turbulence simulations.

Given the cost of these machines ($60 million for Frontera) there has been a stronger mandate in recent years for leadership systems such as Frontera to dig into meaningful projects fast.

Frontera is certainly an impressive machine: It is powered by Intel’s highest-bin SP Cascade Lake processors (the Xeon Platinum 8280s), interconnected with HDR-100 links to each node, and full 200 Gbps HDR links between leaf and core switches. Data Direct Networks contributed the main storage system (50+ PB disk, 3PB of flash, 1.5/TB sec of I/O capability). (See HPCwire article, Fastest Academic Supercomputer Enters Full Production at TACC, Just in Time for Hurricane Season)

Here are brief descriptions of six of the early science programs planned for Frontera, followed below by a bit more on each project taken from articles on the TACC website and lightly edited (links to TACC articles about each project are also below):

  • Cancer Research. George Biros, professor at The University of Texas at Austin, with joint appointments at the Oden Institute for Computational Engineering and Sciences and the Walker Department of Mechanical Engineering, is leading an effort to apply massive, high-speed computers, machine learning, and biophysical models of cells to the problem of diagnosing and treating gliomas.
  • Solar Energy. Ganesh Balasubramanian, an assistant professor of Mechanical Engineering and Mechanics at Lehigh University, is studying the dynamics of organic photovoltaic materials. He is working to develop efficient ways to create next generation flexible solar photovoltaics that can exceed the energy-producing potential of today’s devices.
  • Quantum Chemistry. Olexandr Isayev, an assistant professor of chemistry at the University of North Carolina at Chapel Hill, is focused on solving chemical problems with machine learning, molecular modeling, and quantum mechanics. “For the past five years, I’ve looked at how machine learning can help us solve otherwise unsolvable challenges in chemistry,” Isayev said.
  • Manuela Campanelli, Rochester Institute of Technology

    Cosmology. Manuela Campanelli professor of Astrophysics at the Rochester Institute of Technology and director for the Center for Computational Relativity and Gravitation explores the cataclysmic collision of neutron stars that produced gravitational waves detected in 2017 by the Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space-based observatories.

  • Virus Infection. Peter Kasson, an associate professor of Molecular Physiology and Biomedical Engineering at the University of Virginia, studies the mechanisms of viral infection. “We have to combine experiments with computer models where we build a model of the virus, one atom at a time, and then simulate the mechanics of how the atoms interact,” said Kasson.
  • Turbulence Processes. Diego Donzis, an associate professor in the Department of Aerospace Engineering at Texas A&M University will use Frontera “to run some of the simulations that will allow us to answer some long-standing and new questions we have about the process of mixing in compressible flows.”

FIGHTING CANCER WITH DETAILED MODELS

Biros is working to build bio-physical models of brain tumor development that include more factors than ever before, and to train automated medical image processing systems to detect the extent of cancers beyond the main tumor growth, which must be removed during surgery to prevent the cancer from returning.

Results for a real tumor taken from the BraTS’18 TCIA dataset. The images show the tumor core (enhancing and necrotic tumor cells) indicated as a gray wireframe with the reconstructed initial condition (magenta volume) and parts of the patient brain geometry.

“We know that as tumors grow, they interact mechanically with the surrounding healthy brain tissue. One hypothesis is that quantifying this interaction may give clues on specific mutations that drive the cancer. Another hypothesis is that if we can figure out where exactly the tumor started this will also give us information on specific mutations,” said Biros.

Biros and his team are trying to train more complex models than have ever been created, containing parameters that capture how new blood vessels form, and how diverse types of cells within a tumor interact. Doing so means incorporating data from many patients.

“We can easily come up with models that have hundreds of parameters. But with these models, even to test out basic hypotheses, we need to conduct simulations on a big machine,” Biros said. “The algorithm and application development and training need a big resource capable of a quick turnaround. Without Frontera, and the support we have received from the TACC staff, it would be impossible.”

“You need state-of-the-art resources to do science,” he explained. “With Frontera, everything is integrated in the system — GPUs, CPUs, visualization, analysis, common file systems. That’s exceptional, especially at this scale.” Link to TACC article on this project.

SEARCHING FOR IMPROVED PHOTOVOLTAICS

Balasubramanian was among the early users of Frontera. Actively collaborating with experimentalists, he is working to develop efficient ways to create next generation flexible solar photovoltaics that can exceed the energy-producing potential of today’s devices

“Our work involves simulation of solvent evaporation processes found in a typical spin coating experiment,” he said. “In order to compare results from atomistic simulations with images produced during experiments, large-scale computations are required.”

His typical simulations contain over one hundred million superatoms (a cluster of atoms that exhibit some of the properties of elemental atoms), and replicate the physical movements and interactions among these superatoms. Alongside these large simulations, Balasubramanian also performs computations to optimize the design variables in order to improve specific properties.

“With some of our initial simulations on Frontera, we have been able to improve by a factor of four to five, in terms of computing speed,” he said. Whereas a simulation of 100,000 atoms and few million timesteps would be carried out at the rate of 100 timesteps per second on a normal supercomputer, on Frontera, Balasubramanian has achieved speeds of approximately 500 timesteps per second.

“Understanding the morphology of these large-scale simulations would help us correlate the structure, properties, and performance of organic photovoltaics,” he said. Link to TACC article on the project.

LEVERAGING ML FOR QUANTUM MOLECULAR MODELING

“For the past five years, I’ve looked at how machine learning can help us solve otherwise unsolvable challenges in chemistry,” Isayev said. He noted that to truly determine how a molecule will respond to cells in real world conditions — treating diseases but also potentially causing side-effects — often requires an understanding of the quantum mechanical behavior of many interacting atoms.

Students and postdocs in Isayev lab trained a neural network that can accurately describe the potential energy of molecules based on their three-dimensional structure. In a recent paper published in Nature Communications, his team and team of Adrian Roitberg from the University of Florida showed that by combining several tricks from machine learning, a system can learn coupled cluster theory — a “gold standard” quantum mechanical method used for describing many-body systems — and transfer this knowledge to a neural network.

“We’re using machine learning to accelerate quantum mechanics,” Olexandr explained. “We train a neural network to approximate the solution of Schrodinger equation, in our case solving density functional theory (DFT) equations for organic molecules first.”

The approach Isayev used is called transfer learning. It combines a large number of less-intensive DFT calculations that provide a rough approximation of the system behavior, with a subset of coupled cluster calculations that refine the details of the model.

“Instead of using 100 million CPU hours, you only use one percent of that amount and rely on cheaper methods,” Isayev explained. “We were able to achieve a nine order-of-magnitude speed up for certain applications using neural networks. Once the neural network is trained, you can run pretty accurate calculations, essentially on your laptop in a fraction of a second.” Link to TACC article on this project.

UNDERSTANDING CATACLYSMIC EVENTS IN THE UNIVERSE

“My research uses supercomputers to simulate very compact objects in the universe, such as black holes and neutron stars,” Campanelli explained. “These objects emit extremely powerful bursts of gravitational radiation, and in the case of neutron stars, they also emit very powerful bursts of electromagnetic signals. I work to simulate these events on supercomputers to predict what kind of signals they produce, and then pass these simulation results to our colleagues in astronomy so they know what they are looking for.”

Frontera has been allowing Campanelli to explore the cataclysmic collision of neutron stars that produced gravitational waves detected in 2017 by the Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space-based observatories.

“We’re doing the most accurate and longest simulation ever of this collision to answer some of the key questions about what LIGO observed and what type of electromagnetic signals were emitted during this process,” she said.

In addition to exploring the specific neutron star collision, the project advances computational methods for understanding the dynamics of ejection, accretion, winds, and jets in neutron star mergers, work that is supported by a $1.5 million grant from NASA.

“These mergers expose the extremes of gravitational, electromagnetic and particle physics,” said Campanelli. “They are some of the greatest opportunities for multi-messenger science and the combined study of bursts of light spanning across the electromagnetic spectrum and powerful gravitational wave emissions.”  Link to TACC article on this project.

UNRAVELLING VIRUS INFECTION MECHANISMS

“We work to understand viral infections such as influenza and Zika,” Kasson said. “What we do guides the development of new antiviral therapies, and also helps us assess how well vaccines work and how well people’s immunity can prevent new viral threats from causing widespread disease in the United States.”

Kasson and his team observe viruses experimentally by tagging them with fluorescent proteins and using microscopy to understand how they affect cells. However, the experiments provide them with a very limited level of detail. Kasson relies on computer modeling in conjunction with experiments.

Their research uses experimental data to refine their simulations, and has the potential to serve as a test case for and also develop large-scale adaptive ensemble methods — programs that run many simulations, examine the results, and decide what to run next so that the process of deciding what simulations to do is automated as well as the simulations themselves.

Kasson leads one of the 34 research groups selected to participate in the Frontera early user period. “The initial experience has been extremely smooth. We’ve been able to get some exciting preliminary results that we’re very eager to run further,” Kasson said. “In the time we’ve been using Frontera, our simulations are proceeding two or three times faster than on the prior supercomputers we’ve had access to.” Link to TACC article on the project.

TURNING FRONTERA INTO A TURBULENCE BUSTER

Turbulence is so complicated that scientists today try to simplify it as much as possible but still retain the basic physics of it. One of the simplifications is to assume that the general motion of turbulence, its flow, is incompressible or of constant density. This simplification works as a good approximation of low speed flows, but it falls apart for high speed turbulent flows, which are important for a wide variety of applications and phenomena such as the mixing of fuel in combustion engines of cars, planes, and rockets.

Diego Donzis, Texas A&M

Donzis, an early user of the Frontera system, is no stranger to NSF supercomputers. He developed his group’s code, called Compressible Direct Numerical Simulations (cDNS) using several different systems – among them Stampede1, Stampede2 and now Frontera – and has successfully scaled cDNS up to a million cores on Department of Energy supercomputers Titan and Mira.

“On Frontera, we would like to run some of the simulations that will allow us to answer some long-standing and new questions we have about the process of mixing in compressible flows. Only recently, with computers reaching very high levels of parallelism, can we tackle problems in compressible turbulence at conditions that are relevant to applications,” Donzis said.

More computing power translates to added detail in computer models, which can solve more equations that capture the interactions between turbulence and temperature, pressure, and density — features not accounted for in incompressible flows.

“Frontera will be well-suited for us to run these simulations,” Donzis explained. “Mainly it’s the size of Frontera, which will make some of these unprecedented simulations possible. Also, something attractive to us is that it’s based on well-known architectures; well-known components. We can predict, we hope more or less accurately, how the code will behave, even at very large scales on Frontera. We believe that a full-scale, full machine run on Frontera will be very efficient.”Link to TACC article on the project.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to review the state of HPC use in life sciences. This is somethin Read more…

By John Russell

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This