IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

By John Russell

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit systems up and running and a 53-qubit system expected to go online next month. The latter will become “the largest universal [gate based] quantum system made available for external access in the industry,” says IBM. New additions, including the 53-qubit system, will bring the IBM fleet of commercially available quantum computers to 14 by year’s end according to IBM.

Actually, the new “center” encompasses two locations, Poughkeepsie and York Town, with the following systems: Poughkeepsie has two 20-qubit systems, three 5-qubit systems, and will host the 53-qubit machine; Yorktown has three 20-qubit systems, one 5-qubit system, and one 14-qubit system. IBM isn’t releasing details on the other three systems soon to be made available.

What’s interesting here, besides introduction of the new 53-qubit system, is that IBM director of research Dario Gil says demand for access to quantum systems is what’s been driving IBM’s rapid expansion of its fleet. Just last week, IBM announced a collaboration leading European research organization Fraunhofer-Gesellschaft in which a new IBM Q System One, owned and operated by IBM, will be located in an IBM facility in Germany. IBM reports on the order of 150,000 registered users for its quantum systems.

More qubits. More Machines. All chasing something called quantum advantage which IBM labels as the “single goal” of the quantum community. That sounds like clear progress and it is. However, progress, even steady progress, is one thing, but payoff is another.

Dario Gil, IBM Research Director

IBM, to its credit, has tended to limit its contribution to the hype surrounding quantum computing. Gil, who moved into the IBM Research director role this year, briefed HPCwire on the IBM news and also touched on Big Blue’s overall strategy, the Quantum Volume benchmark pitched by IBM, and a few technology issues being tackled – for example, IBM uses a variety of quantum processor topologies in its systems seeking to identify which topologies work best for particular use cases.

He also injected a note of realism. Asked to define quantum advantage and forecast when it would be achieved, Gil said, “We define QA as when we will have systems that are powerful enough, and, of course, programmable, that would allow us to solve problems that matter, right, something of relevance to your business or science that we couldn’t do before. So my best estimate is that we’re still years away.”

Quantum industry watcher Bob Sorensen, VP of research and technology and chief quantum computing analyst, Hyperion Research, offered praise and caution:

“IBM is demonstrating its long-term commitment to developing quantum computers for the commercial sector and is working hard to roll out a continual steam of tangible gains in technology. But, perhaps more important is IBM’s recent announcement that the firm will install a Q System One quantum computer at one of its facilities in Germany as part of a two-year partnership with the Fraunhofer Society to build a research unit and community around the system. To me, such a deal validates that IBM is not just building systems and hoping to attract customers but instead is working to establish a complete QC ecosystem that spans hardware, software, applications and real world use cases.

“My major concern with the sector right now is that a seemingly steady stream of announcements across the broader QC supply base citing increasing qubit counts, or related metrics, may soon trigger a ‘breakthrough fatigue’, garnering less and less public attention. Strong interest, within both the government and commercial sectors, needs to be maintained if the QC sector is to stay on a robust virtuous development cycle. As such, the sector needs to start rolling out demonstrated quantum advances that translate into real-world application success. I am hoping (perhaps even expecting) some significant developments there in the short-term.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

IBM reports its IBM Q Network program now supports “nearly 80 commercial clients, academic institutions and research laboratories to explore and develop quantum computing algorithms.” IBM offered the following examples progress in its recent announcement:

  • “J.P. Morgan Chase and IBM published a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, our methodology requires only a few thousands of samples to achieve the same result, when comparing to classical Monte Carlo methods. This may allow financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance.
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Published on arXiv, Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices, is a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.
  • The IBM Q Hub at Keio University, in collaboration with their partners Mizhuo, and Misubishi Financial Group (MUFG) proposed an algorithm that reduces the number of qubits and circuit length of an original methodology proposed by IBM for quantum risk analysis demonstrated in financial applications.”

You may recall IBM pitched QV to the industry last March as a benchmark for assessing and comparing quantum computing platforms. It’s a composite measure combining, among other things, qubit count, error rates, and decoherence times. It’s not yet clear how much uptake the new metric is generating in quantum community but these are still early days.

IBM has said it believes it can double the QV of its machines on roughly yearly basis. Gil said, “Within the 10 systems [now accessible] five of those are 20-qubit systems with the quantum volume of 16.” For most of us it’s not exactly clear what QV 16 mean or even what a range of desirable QV targets would be beyond continued improvement.

Quantum Computer at IBM, York Town, NY

Speaking more broadly about IBM’s growing fleet, Gil said “I think what it shows is [our ability] to go from the demonstrations in the laboratory to rolling out system with 95% availability to an entire community.  We do a tremendous amount of research and [still] have lots of things that we haven’t talked about or published, and a roadmap of larger systems [with] high performance, all of that stuff.  What we’re communicating here, I think is fundamental, this inflection point we saw in the community in last three years, was going from five, six laboratories in the world [that could conduct] multi-qubit experiments to a community of tens of thousands of people who can run experiments.”

Gil outlined IBM’s over quantum strategy like this:

  • Lead with bigger and better machines. “We want to have the most advanced systems in the world, right and that’s linked to wanting the highest quantum volume machines produced to date, the number of those machines, and expanding qubit counts like the new 53-qubit system.”
  • Build a large community. “This is embodied in two things. There is the open source component, which is Qiskit (IBM’s python-based developer kit), which is the most widely adopted open source environment for programming in quantum. And the IBM Q Experience, which is the mechanism by which people can program and experience the technology and the community
  • Maximize value of the network. “This has to do with commercial partners, now including large companies, startups, and universities. It’s about using all of these resources. The purpose is to discover other things that need matter with practical applications.”

No doubt the core ideas are similar across the quantum technology vendor ecosystem but it’s useful to hear them. Gil declined to say too much about the forthcoming 53-qubit system beyond it embodied a number of advances around control electronics, noise reduction, packaging etc.

“These are still transmon-based devices. So that’s in common to all the fleet. From that perspective, we haven’t changed the device. But if you look at everything from the lattice and the topology the quantum processor itself, to a lot of core technology that goes inside in terms of how things get coupled to each other, the packaging, and so on, you know, there’s a lot of change,” said Gil.

“One of the things we do is that we give our community different device topologies, in terms of qubit structure. It is very interesting and an important aspect. The relationship between the device topology, meaning what is the connectivity of the qubits to one another, can have really profound implications on the performance of the system, dealing with things like what’s called a spectator error, right, the unwanted coupling between qubits with one another and algorithmic implementations. So for many of these systems it is not only a question of capacity, but it’s also a variety of approaches.

“That’s very important because as a community we’re still learning what is the right topology and the intersection between error mitigation strategies and circuit implementations and topology. Every time we introduce systems, for any given size system, we also introduce the right topology or what we think is right the right topology at any given time, but expect us to keep changing. For example, even on the 53-qubit system, expect that we will have multiple iterations where we keep upgrading it and changing it. The task ultimately is to continue to increase quantum volume, but also to find the right mapping between topology and algorithms,” said Gil.

Circling back to the question of when quantum computing will start solving practical problems, Gil is realistic and optimistic:

“Recall when the narrative was, Ok, here’s what we’re going to do. We’re going to all work really hard and one day we’re going to have a quantum machine with billions of cubits that will be Nirvana. When that occurs, we know that there is a class of algorithms, a few of them, that would take some exponential time to [run on] classical systems] that will then be used with these alternate quantum machine. Right That was that narrative.

“What have we been advocating and changing that narrative successfully is now, don’t wait for holy grail. That’s not how technology works. What you’ve got to do is go from where we are today, and systematically, create generation after generation of systems to eventually get there. And value is going to be created and accrued along the way. The first value will be at the level of skills, training, intellectual property, the folks are building the first generation of systems. And we all agree that the community is not millions of people, but it’s hundreds of thousands of people who are involved. I don’t know how many startups there are now. Last time I checked it’s like 20 companies trying to build quantum hardware. If I add software now in stock is probably in the triple digits. We’ve seen national networks and quantum all over the world. So value is accruing along the way,” said Gil.

It’s going to be a long ride to QA and practical quantum computing. Perhaps too many of us are like kids in the back of a car on a long journey annoying our parents with chants of “Are we there yet?” half-intended as a real question and half-shouted just to provoke a response.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computing. Nvidia is pitching the DPU as an active engine... Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire