IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

By John Russell

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit systems up and running and a 53-qubit system expected to go online next month. The latter will become “the largest universal [gate based] quantum system made available for external access in the industry,” says IBM. New additions, including the 53-qubit system, will bring the IBM fleet of commercially available quantum computers to 14 by year’s end according to IBM.

Actually, the new “center” encompasses two locations, Poughkeepsie and York Town, with the following systems: Poughkeepsie has two 20-qubit systems, three 5-qubit systems, and will host the 53-qubit machine; Yorktown has three 20-qubit systems, one 5-qubit system, and one 14-qubit system. IBM isn’t releasing details on the other three systems soon to be made available.

What’s interesting here, besides introduction of the new 53-qubit system, is that IBM director of research Dario Gil says demand for access to quantum systems is what’s been driving IBM’s rapid expansion of its fleet. Just last week, IBM announced a collaboration leading European research organization Fraunhofer-Gesellschaft in which a new IBM Q System One, owned and operated by IBM, will be located in an IBM facility in Germany. IBM reports on the order of 150,000 registered users for its quantum systems.

More qubits. More Machines. All chasing something called quantum advantage which IBM labels as the “single goal” of the quantum community. That sounds like clear progress and it is. However, progress, even steady progress, is one thing, but payoff is another.

Dario Gil, IBM Research Director

IBM, to its credit, has tended to limit its contribution to the hype surrounding quantum computing. Gil, who moved into the IBM Research director role this year, briefed HPCwire on the IBM news and also touched on Big Blue’s overall strategy, the Quantum Volume benchmark pitched by IBM, and a few technology issues being tackled – for example, IBM uses a variety of quantum processor topologies in its systems seeking to identify which topologies work best for particular use cases.

He also injected a note of realism. Asked to define quantum advantage and forecast when it would be achieved, Gil said, “We define QA as when we will have systems that are powerful enough, and, of course, programmable, that would allow us to solve problems that matter, right, something of relevance to your business or science that we couldn’t do before. So my best estimate is that we’re still years away.”

Quantum industry watcher Bob Sorensen, VP of research and technology and chief quantum computing analyst, Hyperion Research, offered praise and caution:

“IBM is demonstrating its long-term commitment to developing quantum computers for the commercial sector and is working hard to roll out a continual steam of tangible gains in technology. But, perhaps more important is IBM’s recent announcement that the firm will install a Q System One quantum computer at one of its facilities in Germany as part of a two-year partnership with the Fraunhofer Society to build a research unit and community around the system. To me, such a deal validates that IBM is not just building systems and hoping to attract customers but instead is working to establish a complete QC ecosystem that spans hardware, software, applications and real world use cases.

“My major concern with the sector right now is that a seemingly steady stream of announcements across the broader QC supply base citing increasing qubit counts, or related metrics, may soon trigger a ‘breakthrough fatigue’, garnering less and less public attention. Strong interest, within both the government and commercial sectors, needs to be maintained if the QC sector is to stay on a robust virtuous development cycle. As such, the sector needs to start rolling out demonstrated quantum advances that translate into real-world application success. I am hoping (perhaps even expecting) some significant developments there in the short-term.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

IBM reports its IBM Q Network program now supports “nearly 80 commercial clients, academic institutions and research laboratories to explore and develop quantum computing algorithms.” IBM offered the following examples progress in its recent announcement:

  • “J.P. Morgan Chase and IBM published a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, our methodology requires only a few thousands of samples to achieve the same result, when comparing to classical Monte Carlo methods. This may allow financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance.
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Published on arXiv, Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices, is a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.
  • The IBM Q Hub at Keio University, in collaboration with their partners Mizhuo, and Misubishi Financial Group (MUFG) proposed an algorithm that reduces the number of qubits and circuit length of an original methodology proposed by IBM for quantum risk analysis demonstrated in financial applications.”

You may recall IBM pitched QV to the industry last March as a benchmark for assessing and comparing quantum computing platforms. It’s a composite measure combining, among other things, qubit count, error rates, and decoherence times. It’s not yet clear how much uptake the new metric is generating in quantum community but these are still early days.

IBM has said it believes it can double the QV of its machines on roughly yearly basis. Gil said, “Within the 10 systems [now accessible] five of those are 20-qubit systems with the quantum volume of 16.” For most of us it’s not exactly clear what QV 16 mean or even what a range of desirable QV targets would be beyond continued improvement.

Quantum Computer at IBM, York Town, NY

Speaking more broadly about IBM’s growing fleet, Gil said “I think what it shows is [our ability] to go from the demonstrations in the laboratory to rolling out system with 95% availability to an entire community.  We do a tremendous amount of research and [still] have lots of things that we haven’t talked about or published, and a roadmap of larger systems [with] high performance, all of that stuff.  What we’re communicating here, I think is fundamental, this inflection point we saw in the community in last three years, was going from five, six laboratories in the world [that could conduct] multi-qubit experiments to a community of tens of thousands of people who can run experiments.”

Gil outlined IBM’s over quantum strategy like this:

  • Lead with bigger and better machines. “We want to have the most advanced systems in the world, right and that’s linked to wanting the highest quantum volume machines produced to date, the number of those machines, and expanding qubit counts like the new 53-qubit system.”
  • Build a large community. “This is embodied in two things. There is the open source component, which is Qiskit (IBM’s python-based developer kit), which is the most widely adopted open source environment for programming in quantum. And the IBM Q Experience, which is the mechanism by which people can program and experience the technology and the community
  • Maximize value of the network. “This has to do with commercial partners, now including large companies, startups, and universities. It’s about using all of these resources. The purpose is to discover other things that need matter with practical applications.”

No doubt the core ideas are similar across the quantum technology vendor ecosystem but it’s useful to hear them. Gil declined to say too much about the forthcoming 53-qubit system beyond it embodied a number of advances around control electronics, noise reduction, packaging etc.

“These are still transmon-based devices. So that’s in common to all the fleet. From that perspective, we haven’t changed the device. But if you look at everything from the lattice and the topology the quantum processor itself, to a lot of core technology that goes inside in terms of how things get coupled to each other, the packaging, and so on, you know, there’s a lot of change,” said Gil.

“One of the things we do is that we give our community different device topologies, in terms of qubit structure. It is very interesting and an important aspect. The relationship between the device topology, meaning what is the connectivity of the qubits to one another, can have really profound implications on the performance of the system, dealing with things like what’s called a spectator error, right, the unwanted coupling between qubits with one another and algorithmic implementations. So for many of these systems it is not only a question of capacity, but it’s also a variety of approaches.

“That’s very important because as a community we’re still learning what is the right topology and the intersection between error mitigation strategies and circuit implementations and topology. Every time we introduce systems, for any given size system, we also introduce the right topology or what we think is right the right topology at any given time, but expect us to keep changing. For example, even on the 53-qubit system, expect that we will have multiple iterations where we keep upgrading it and changing it. The task ultimately is to continue to increase quantum volume, but also to find the right mapping between topology and algorithms,” said Gil.

Circling back to the question of when quantum computing will start solving practical problems, Gil is realistic and optimistic:

“Recall when the narrative was, Ok, here’s what we’re going to do. We’re going to all work really hard and one day we’re going to have a quantum machine with billions of cubits that will be Nirvana. When that occurs, we know that there is a class of algorithms, a few of them, that would take some exponential time to [run on] classical systems] that will then be used with these alternate quantum machine. Right That was that narrative.

“What have we been advocating and changing that narrative successfully is now, don’t wait for holy grail. That’s not how technology works. What you’ve got to do is go from where we are today, and systematically, create generation after generation of systems to eventually get there. And value is going to be created and accrued along the way. The first value will be at the level of skills, training, intellectual property, the folks are building the first generation of systems. And we all agree that the community is not millions of people, but it’s hundreds of thousands of people who are involved. I don’t know how many startups there are now. Last time I checked it’s like 20 companies trying to build quantum hardware. If I add software now in stock is probably in the triple digits. We’ve seen national networks and quantum all over the world. So value is accruing along the way,” said Gil.

It’s going to be a long ride to QA and practical quantum computing. Perhaps too many of us are like kids in the back of a car on a long journey annoying our parents with chants of “Are we there yet?” half-intended as a real question and half-shouted just to provoke a response.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This