IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

By John Russell

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit systems up and running and a 53-qubit system expected to go online next month. The latter will become “the largest universal [gate based] quantum system made available for external access in the industry,” says IBM. New additions, including the 53-qubit system, will bring the IBM fleet of commercially available quantum computers to 14 by year’s end according to IBM.

Actually, the new “center” encompasses two locations, Poughkeepsie and York Town, with the following systems: Poughkeepsie has two 20-qubit systems, three 5-qubit systems, and will host the 53-qubit machine; Yorktown has three 20-qubit systems, one 5-qubit system, and one 14-qubit system. IBM isn’t releasing details on the other three systems soon to be made available.

What’s interesting here, besides introduction of the new 53-qubit system, is that IBM director of research Dario Gil says demand for access to quantum systems is what’s been driving IBM’s rapid expansion of its fleet. Just last week, IBM announced a collaboration leading European research organization Fraunhofer-Gesellschaft in which a new IBM Q System One, owned and operated by IBM, will be located in an IBM facility in Germany. IBM reports on the order of 150,000 registered users for its quantum systems.

More qubits. More Machines. All chasing something called quantum advantage which IBM labels as the “single goal” of the quantum community. That sounds like clear progress and it is. However, progress, even steady progress, is one thing, but payoff is another.

Dario Gil, IBM Research Director

IBM, to its credit, has tended to limit its contribution to the hype surrounding quantum computing. Gil, who moved into the IBM Research director role this year, briefed HPCwire on the IBM news and also touched on Big Blue’s overall strategy, the Quantum Volume benchmark pitched by IBM, and a few technology issues being tackled – for example, IBM uses a variety of quantum processor topologies in its systems seeking to identify which topologies work best for particular use cases.

He also injected a note of realism. Asked to define quantum advantage and forecast when it would be achieved, Gil said, “We define QA as when we will have systems that are powerful enough, and, of course, programmable, that would allow us to solve problems that matter, right, something of relevance to your business or science that we couldn’t do before. So my best estimate is that we’re still years away.”

Quantum industry watcher Bob Sorensen, VP of research and technology and chief quantum computing analyst, Hyperion Research, offered praise and caution:

“IBM is demonstrating its long-term commitment to developing quantum computers for the commercial sector and is working hard to roll out a continual steam of tangible gains in technology. But, perhaps more important is IBM’s recent announcement that the firm will install a Q System One quantum computer at one of its facilities in Germany as part of a two-year partnership with the Fraunhofer Society to build a research unit and community around the system. To me, such a deal validates that IBM is not just building systems and hoping to attract customers but instead is working to establish a complete QC ecosystem that spans hardware, software, applications and real world use cases.

“My major concern with the sector right now is that a seemingly steady stream of announcements across the broader QC supply base citing increasing qubit counts, or related metrics, may soon trigger a ‘breakthrough fatigue’, garnering less and less public attention. Strong interest, within both the government and commercial sectors, needs to be maintained if the QC sector is to stay on a robust virtuous development cycle. As such, the sector needs to start rolling out demonstrated quantum advances that translate into real-world application success. I am hoping (perhaps even expecting) some significant developments there in the short-term.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

IBM reports its IBM Q Network program now supports “nearly 80 commercial clients, academic institutions and research laboratories to explore and develop quantum computing algorithms.” IBM offered the following examples progress in its recent announcement:

  • “J.P. Morgan Chase and IBM published a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, our methodology requires only a few thousands of samples to achieve the same result, when comparing to classical Monte Carlo methods. This may allow financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance.
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Published on arXiv, Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices, is a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.
  • The IBM Q Hub at Keio University, in collaboration with their partners Mizhuo, and Misubishi Financial Group (MUFG) proposed an algorithm that reduces the number of qubits and circuit length of an original methodology proposed by IBM for quantum risk analysis demonstrated in financial applications.”

You may recall IBM pitched QV to the industry last March as a benchmark for assessing and comparing quantum computing platforms. It’s a composite measure combining, among other things, qubit count, error rates, and decoherence times. It’s not yet clear how much uptake the new metric is generating in quantum community but these are still early days.

IBM has said it believes it can double the QV of its machines on roughly yearly basis. Gil said, “Within the 10 systems [now accessible] five of those are 20-qubit systems with the quantum volume of 16.” For most of us it’s not exactly clear what QV 16 mean or even what a range of desirable QV targets would be beyond continued improvement.

Quantum Computer at IBM, York Town, NY

Speaking more broadly about IBM’s growing fleet, Gil said “I think what it shows is [our ability] to go from the demonstrations in the laboratory to rolling out system with 95% availability to an entire community.  We do a tremendous amount of research and [still] have lots of things that we haven’t talked about or published, and a roadmap of larger systems [with] high performance, all of that stuff.  What we’re communicating here, I think is fundamental, this inflection point we saw in the community in last three years, was going from five, six laboratories in the world [that could conduct] multi-qubit experiments to a community of tens of thousands of people who can run experiments.”

Gil outlined IBM’s over quantum strategy like this:

  • Lead with bigger and better machines. “We want to have the most advanced systems in the world, right and that’s linked to wanting the highest quantum volume machines produced to date, the number of those machines, and expanding qubit counts like the new 53-qubit system.”
  • Build a large community. “This is embodied in two things. There is the open source component, which is Qiskit (IBM’s python-based developer kit), which is the most widely adopted open source environment for programming in quantum. And the IBM Q Experience, which is the mechanism by which people can program and experience the technology and the community
  • Maximize value of the network. “This has to do with commercial partners, now including large companies, startups, and universities. It’s about using all of these resources. The purpose is to discover other things that need matter with practical applications.”

No doubt the core ideas are similar across the quantum technology vendor ecosystem but it’s useful to hear them. Gil declined to say too much about the forthcoming 53-qubit system beyond it embodied a number of advances around control electronics, noise reduction, packaging etc.

“These are still transmon-based devices. So that’s in common to all the fleet. From that perspective, we haven’t changed the device. But if you look at everything from the lattice and the topology the quantum processor itself, to a lot of core technology that goes inside in terms of how things get coupled to each other, the packaging, and so on, you know, there’s a lot of change,” said Gil.

“One of the things we do is that we give our community different device topologies, in terms of qubit structure. It is very interesting and an important aspect. The relationship between the device topology, meaning what is the connectivity of the qubits to one another, can have really profound implications on the performance of the system, dealing with things like what’s called a spectator error, right, the unwanted coupling between qubits with one another and algorithmic implementations. So for many of these systems it is not only a question of capacity, but it’s also a variety of approaches.

“That’s very important because as a community we’re still learning what is the right topology and the intersection between error mitigation strategies and circuit implementations and topology. Every time we introduce systems, for any given size system, we also introduce the right topology or what we think is right the right topology at any given time, but expect us to keep changing. For example, even on the 53-qubit system, expect that we will have multiple iterations where we keep upgrading it and changing it. The task ultimately is to continue to increase quantum volume, but also to find the right mapping between topology and algorithms,” said Gil.

Circling back to the question of when quantum computing will start solving practical problems, Gil is realistic and optimistic:

“Recall when the narrative was, Ok, here’s what we’re going to do. We’re going to all work really hard and one day we’re going to have a quantum machine with billions of cubits that will be Nirvana. When that occurs, we know that there is a class of algorithms, a few of them, that would take some exponential time to [run on] classical systems] that will then be used with these alternate quantum machine. Right That was that narrative.

“What have we been advocating and changing that narrative successfully is now, don’t wait for holy grail. That’s not how technology works. What you’ve got to do is go from where we are today, and systematically, create generation after generation of systems to eventually get there. And value is going to be created and accrued along the way. The first value will be at the level of skills, training, intellectual property, the folks are building the first generation of systems. And we all agree that the community is not millions of people, but it’s hundreds of thousands of people who are involved. I don’t know how many startups there are now. Last time I checked it’s like 20 companies trying to build quantum hardware. If I add software now in stock is probably in the triple digits. We’ve seen national networks and quantum all over the world. So value is accruing along the way,” said Gil.

It’s going to be a long ride to QA and practical quantum computing. Perhaps too many of us are like kids in the back of a car on a long journey annoying our parents with chants of “Are we there yet?” half-intended as a real question and half-shouted just to provoke a response.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This