IBM Opens Quantum Computing Center; Announces 53-Qubit Machine

By John Russell

September 19, 2019

Gauging progress in quantum computing is a tricky thing. IBM yesterday announced the opening of the IBM Quantum Computing Center in New York, with five 20-qubit systems up and running and a 53-qubit system expected to go online next month. The latter will become “the largest universal [gate based] quantum system made available for external access in the industry,” says IBM. New additions, including the 53-qubit system, will bring the IBM fleet of commercially available quantum computers to 14 by year’s end according to IBM.

Actually, the new “center” encompasses two locations, Poughkeepsie and York Town, with the following systems: Poughkeepsie has two 20-qubit systems, three 5-qubit systems, and will host the 53-qubit machine; Yorktown has three 20-qubit systems, one 5-qubit system, and one 14-qubit system. IBM isn’t releasing details on the other three systems soon to be made available.

What’s interesting here, besides introduction of the new 53-qubit system, is that IBM director of research Dario Gil says demand for access to quantum systems is what’s been driving IBM’s rapid expansion of its fleet. Just last week, IBM announced a collaboration leading European research organization Fraunhofer-Gesellschaft in which a new IBM Q System One, owned and operated by IBM, will be located in an IBM facility in Germany. IBM reports on the order of 150,000 registered users for its quantum systems.

More qubits. More Machines. All chasing something called quantum advantage which IBM labels as the “single goal” of the quantum community. That sounds like clear progress and it is. However, progress, even steady progress, is one thing, but payoff is another.

Dario Gil, IBM Research Director

IBM, to its credit, has tended to limit its contribution to the hype surrounding quantum computing. Gil, who moved into the IBM Research director role this year, briefed HPCwire on the IBM news and also touched on Big Blue’s overall strategy, the Quantum Volume benchmark pitched by IBM, and a few technology issues being tackled – for example, IBM uses a variety of quantum processor topologies in its systems seeking to identify which topologies work best for particular use cases.

He also injected a note of realism. Asked to define quantum advantage and forecast when it would be achieved, Gil said, “We define QA as when we will have systems that are powerful enough, and, of course, programmable, that would allow us to solve problems that matter, right, something of relevance to your business or science that we couldn’t do before. So my best estimate is that we’re still years away.”

Quantum industry watcher Bob Sorensen, VP of research and technology and chief quantum computing analyst, Hyperion Research, offered praise and caution:

“IBM is demonstrating its long-term commitment to developing quantum computers for the commercial sector and is working hard to roll out a continual steam of tangible gains in technology. But, perhaps more important is IBM’s recent announcement that the firm will install a Q System One quantum computer at one of its facilities in Germany as part of a two-year partnership with the Fraunhofer Society to build a research unit and community around the system. To me, such a deal validates that IBM is not just building systems and hoping to attract customers but instead is working to establish a complete QC ecosystem that spans hardware, software, applications and real world use cases.

“My major concern with the sector right now is that a seemingly steady stream of announcements across the broader QC supply base citing increasing qubit counts, or related metrics, may soon trigger a ‘breakthrough fatigue’, garnering less and less public attention. Strong interest, within both the government and commercial sectors, needs to be maintained if the QC sector is to stay on a robust virtuous development cycle. As such, the sector needs to start rolling out demonstrated quantum advances that translate into real-world application success. I am hoping (perhaps even expecting) some significant developments there in the short-term.”

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

IBM reports its IBM Q Network program now supports “nearly 80 commercial clients, academic institutions and research laboratories to explore and develop quantum computing algorithms.” IBM offered the following examples progress in its recent announcement:

  • “J.P. Morgan Chase and IBM published a methodology to price financial options and portfolios of such options, on a gate-based quantum computer. This resulted in an algorithm that provides a quadratic speedup, i.e. whereby classically computers need millions of samples, our methodology requires only a few thousands of samples to achieve the same result, when comparing to classical Monte Carlo methods. This may allow financial analysts to perform the option pricing and risk analysis in near real time. The implementation is available as open source in Qiskit Finance.
  • Mitsubishi Chemical, Keio University and IBM simulated the initial steps of the reaction mechanism between lithium and oxygen in lithium-air batteries. Published on arXiv, Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices, is a first step in modeling the entire lithium-oxygen reaction on a quantum computer. Better understanding this interaction could lead to more efficient batteries for mobile devices or automotive vehicles.
  • The IBM Q Hub at Keio University, in collaboration with their partners Mizhuo, and Misubishi Financial Group (MUFG) proposed an algorithm that reduces the number of qubits and circuit length of an original methodology proposed by IBM for quantum risk analysis demonstrated in financial applications.”

You may recall IBM pitched QV to the industry last March as a benchmark for assessing and comparing quantum computing platforms. It’s a composite measure combining, among other things, qubit count, error rates, and decoherence times. It’s not yet clear how much uptake the new metric is generating in quantum community but these are still early days.

IBM has said it believes it can double the QV of its machines on roughly yearly basis. Gil said, “Within the 10 systems [now accessible] five of those are 20-qubit systems with the quantum volume of 16.” For most of us it’s not exactly clear what QV 16 mean or even what a range of desirable QV targets would be beyond continued improvement.

Quantum Computer at IBM, York Town, NY

Speaking more broadly about IBM’s growing fleet, Gil said “I think what it shows is [our ability] to go from the demonstrations in the laboratory to rolling out system with 95% availability to an entire community.  We do a tremendous amount of research and [still] have lots of things that we haven’t talked about or published, and a roadmap of larger systems [with] high performance, all of that stuff.  What we’re communicating here, I think is fundamental, this inflection point we saw in the community in last three years, was going from five, six laboratories in the world [that could conduct] multi-qubit experiments to a community of tens of thousands of people who can run experiments.”

Gil outlined IBM’s over quantum strategy like this:

  • Lead with bigger and better machines. “We want to have the most advanced systems in the world, right and that’s linked to wanting the highest quantum volume machines produced to date, the number of those machines, and expanding qubit counts like the new 53-qubit system.”
  • Build a large community. “This is embodied in two things. There is the open source component, which is Qiskit (IBM’s python-based developer kit), which is the most widely adopted open source environment for programming in quantum. And the IBM Q Experience, which is the mechanism by which people can program and experience the technology and the community
  • Maximize value of the network. “This has to do with commercial partners, now including large companies, startups, and universities. It’s about using all of these resources. The purpose is to discover other things that need matter with practical applications.”

No doubt the core ideas are similar across the quantum technology vendor ecosystem but it’s useful to hear them. Gil declined to say too much about the forthcoming 53-qubit system beyond it embodied a number of advances around control electronics, noise reduction, packaging etc.

“These are still transmon-based devices. So that’s in common to all the fleet. From that perspective, we haven’t changed the device. But if you look at everything from the lattice and the topology the quantum processor itself, to a lot of core technology that goes inside in terms of how things get coupled to each other, the packaging, and so on, you know, there’s a lot of change,” said Gil.

“One of the things we do is that we give our community different device topologies, in terms of qubit structure. It is very interesting and an important aspect. The relationship between the device topology, meaning what is the connectivity of the qubits to one another, can have really profound implications on the performance of the system, dealing with things like what’s called a spectator error, right, the unwanted coupling between qubits with one another and algorithmic implementations. So for many of these systems it is not only a question of capacity, but it’s also a variety of approaches.

“That’s very important because as a community we’re still learning what is the right topology and the intersection between error mitigation strategies and circuit implementations and topology. Every time we introduce systems, for any given size system, we also introduce the right topology or what we think is right the right topology at any given time, but expect us to keep changing. For example, even on the 53-qubit system, expect that we will have multiple iterations where we keep upgrading it and changing it. The task ultimately is to continue to increase quantum volume, but also to find the right mapping between topology and algorithms,” said Gil.

Circling back to the question of when quantum computing will start solving practical problems, Gil is realistic and optimistic:

“Recall when the narrative was, Ok, here’s what we’re going to do. We’re going to all work really hard and one day we’re going to have a quantum machine with billions of cubits that will be Nirvana. When that occurs, we know that there is a class of algorithms, a few of them, that would take some exponential time to [run on] classical systems] that will then be used with these alternate quantum machine. Right That was that narrative.

“What have we been advocating and changing that narrative successfully is now, don’t wait for holy grail. That’s not how technology works. What you’ve got to do is go from where we are today, and systematically, create generation after generation of systems to eventually get there. And value is going to be created and accrued along the way. The first value will be at the level of skills, training, intellectual property, the folks are building the first generation of systems. And we all agree that the community is not millions of people, but it’s hundreds of thousands of people who are involved. I don’t know how many startups there are now. Last time I checked it’s like 20 companies trying to build quantum hardware. If I add software now in stock is probably in the triple digits. We’ve seen national networks and quantum all over the world. So value is accruing along the way,” said Gil.

It’s going to be a long ride to QA and practical quantum computing. Perhaps too many of us are like kids in the back of a car on a long journey annoying our parents with chants of “Are we there yet?” half-intended as a real question and half-shouted just to provoke a response.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This