Kubernetes, Containers and HPC

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs.

Recently, high performance computing (HPC) is moving closer to the enterprise and can therefore benefit from an HPC container and Kubernetes ecosystem, with new requirements to quickly allocate and deallocate computational resources to HPC workloads. Compute capacity, be it for enterprise or HPC workloads, can no longer be planned years in advance.

Getting on-demand resources from a shared compute resource pool has never been easier as cloud service providers and software vendors are continuously investing and improving their services. In enterprise computing, packaging software in container images and running containers is meanwhile standard. Kubernetes has become the most widely used container and resource orchestrator in the Fortune 500 companies. The HPC community, led by efforts in the AI community, is picking up the concept and applying it to batch jobs and interactive applications.

Containers and HPC: Why Should We Care?

HPC leaders have a hard time. There are lots of changes and new ways of thinking in software technology and IT operations. Containerization have become ubiquitous; container orchestration with Kubernetes is the new standard. Deep learning workloads are continuously increasing their footprint, and Site Reliability Engineering (SRE) has been adopted on many sites. It is very hard for each of the new technologies to judge their usefulness for HPC type of workloads.

Introduction to Kubernetes

If your engineers or operators are running a single container on their laptop, they probably use Docker for doing that. But when having multiples of containers potentially on dozens or hundreds of machines, it becomes difficult to get them maintained. Kubernetes simplifies container orchestration by providing scheduling, container life-cycle management, networking functionalities and more in a scalable and extensible platform.

Major components of Kubernetes are the Kubernetes master which contains an API server, scheduler, and a controller manager. Controllers are a main concept: they watch out for the current state of resources and compare them with the expected state. If they differ, they take actions to move to an expected state. On the execution side we have the kubelet which is in contact with the master as well as a network proxy. The kubelet manages containers by using the container runtime interface (CRI) for interacting with runtimes like Docker, containerd, or CRI-O.

Running Kubernetes or HPC Schedulers?

Kubernetes is doing workload and resource management. Sounds familiar? Yes, in many ways it shares lots of functionalities with traditional HPC workload managers. The main differences are the workload types they focus on. While HPC workload managers are focused on running distributed memory jobs and support high-throughput scenarios, Kubernetes is primarily built for orchestrating containerized microservice applications.

HPC workload managers like Univa Grid Engine added a huge number of features in the last decades. Some notable functionalities are:

–  Support for shared and distributed memory (like MPI based) jobs

–  Advance reservations for allocating and blocking resources in advance

–  Fair-share to customize resource usage patterns across users, projects, and departments

–  Resource reservation for collecting resources for large jobs

–  Preemption for stopping low prior jobs in favor for running high prior jobs

–  NUMA aware scheduling for automatically allocating cores and sockets

–  Adhere to standards for job submission and management (like DRMAA and DRMAAv2)

HPC workload managers are tuned for speed, throughput, and scalability, being capable of running millions of batch jobs a day and supporting the infrastructure of the largest supercomputers in the world. What traditional HPC workload managers lack are means for supporting microservice architectures, deeply integrated container management capabilities, network management, and application life-cycle management. They are primarily built for running batch jobs in different scenarios like high-throughput, MPI jobs spanning across potentially hundreds or thousands of nodes, jobs running weeks, or jobs using special resource types (GPUs, FPGAs, licenses, etc.).

Kubernetes on the other hand is built for containerized microservice applications from the bottom- up. Some notable features are:

–  Management of sets of pods. Pods consist of one or more co-located containers.

–  Networking functionalities through a pluggable overlay network

–  Self-healing through controller concept comparing expected with current state

–  Declarative style configuration

–  Load balancing functionalities

–  Rolling updates of different versions of workloads

–  Integrations in many monitoring and logging solutions

–  Hooks to integrate external persistent storage in pods

–  Service discovery and routing

What Kubernetes lacks at this time is a proper high-throughput batch job queueing system with a sophisticated rule system for managing resource allocations. But one of the main drawbacks we see is that traditional HPC engineering applications are not yet built to interact with Kubernetes. But this will change in the future. New kinds of AI workloads on the other hand are supporting Kubernetes already very well – in fact many of these packages are targeted to Kubernetes.

Can HPC Workload Be Managed by Kubernetes?

We should combine both Kubernetes and HPC workload-management systems to fully meet the HPC requirements. Kubernetes will be used for managing HPC containers along with all the required services. Inside the containers, not just the engineering application can be run, but also the capability to either plug into an existing HPC cluster or run an entire HPC resource manager installation (like SLURM or Univa Grid Engine) needs to be provided. In that way, we can provide compatibility to the engineering applications and can exploit the extended batch scheduling capabilities. At the same time our whole deployment can be operated in all Kubernetes enabled environments with the advantages of standardized container orchestration.

Ease of Administration

HPC environments consist of a potentially large set of containers. The higher abstraction of container orchestration compared to self-managing container single runtime engines provides the necessary flexibility we need to fulfill different customer requirements. Management operations like scaling the deployment are much simpler to implement and execute.

The Run-Time for Hybrid and Multi-Cloud Offers True Portability

Portability is a key value of containers. Kubernetes provides us this portability for fleets of containers. We can have the same experience on-premises as well as on different cloud infrastructures. Engineers can seamlessly switch the infrastructure without any changes for the engineers. In that way we can choose the infrastructure by criteria like price, performance, and capabilities. When running on premises we can start offering true hybrid-cloud experience by providing a consistent infrastructure with the same operational and HPC application experience and seamlessly use on-demand cloud resources when required.

What’s Next?

Embracing Kubernetes for the specific requirements of HPC and engineering workload is not straight forward. But due to the success of Kubernetes and its open and extensible architecture the ecosystem is opening up for HPC applications primarily driven by the demand of new AI workloads and HPC containers.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. This article is based on a white paper they wrote detailing their experience using UberCloud HPC containers and Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This