Kubernetes, Containers and HPC

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs.

Recently, high performance computing (HPC) is moving closer to the enterprise and can therefore benefit from an HPC container and Kubernetes ecosystem, with new requirements to quickly allocate and deallocate computational resources to HPC workloads. Compute capacity, be it for enterprise or HPC workloads, can no longer be planned years in advance.

Getting on-demand resources from a shared compute resource pool has never been easier as cloud service providers and software vendors are continuously investing and improving their services. In enterprise computing, packaging software in container images and running containers is meanwhile standard. Kubernetes has become the most widely used container and resource orchestrator in the Fortune 500 companies. The HPC community, led by efforts in the AI community, is picking up the concept and applying it to batch jobs and interactive applications.

Containers and HPC: Why Should We Care?

HPC leaders have a hard time. There are lots of changes and new ways of thinking in software technology and IT operations. Containerization have become ubiquitous; container orchestration with Kubernetes is the new standard. Deep learning workloads are continuously increasing their footprint, and Site Reliability Engineering (SRE) has been adopted on many sites. It is very hard for each of the new technologies to judge their usefulness for HPC type of workloads.

Introduction to Kubernetes

If your engineers or operators are running a single container on their laptop, they probably use Docker for doing that. But when having multiples of containers potentially on dozens or hundreds of machines, it becomes difficult to get them maintained. Kubernetes simplifies container orchestration by providing scheduling, container life-cycle management, networking functionalities and more in a scalable and extensible platform.

Major components of Kubernetes are the Kubernetes master which contains an API server, scheduler, and a controller manager. Controllers are a main concept: they watch out for the current state of resources and compare them with the expected state. If they differ, they take actions to move to an expected state. On the execution side we have the kubelet which is in contact with the master as well as a network proxy. The kubelet manages containers by using the container runtime interface (CRI) for interacting with runtimes like Docker, containerd, or CRI-O.

Running Kubernetes or HPC Schedulers?

Kubernetes is doing workload and resource management. Sounds familiar? Yes, in many ways it shares lots of functionalities with traditional HPC workload managers. The main differences are the workload types they focus on. While HPC workload managers are focused on running distributed memory jobs and support high-throughput scenarios, Kubernetes is primarily built for orchestrating containerized microservice applications.

HPC workload managers like Univa Grid Engine added a huge number of features in the last decades. Some notable functionalities are:

–  Support for shared and distributed memory (like MPI based) jobs

–  Advance reservations for allocating and blocking resources in advance

–  Fair-share to customize resource usage patterns across users, projects, and departments

–  Resource reservation for collecting resources for large jobs

–  Preemption for stopping low prior jobs in favor for running high prior jobs

–  NUMA aware scheduling for automatically allocating cores and sockets

–  Adhere to standards for job submission and management (like DRMAA and DRMAAv2)

HPC workload managers are tuned for speed, throughput, and scalability, being capable of running millions of batch jobs a day and supporting the infrastructure of the largest supercomputers in the world. What traditional HPC workload managers lack are means for supporting microservice architectures, deeply integrated container management capabilities, network management, and application life-cycle management. They are primarily built for running batch jobs in different scenarios like high-throughput, MPI jobs spanning across potentially hundreds or thousands of nodes, jobs running weeks, or jobs using special resource types (GPUs, FPGAs, licenses, etc.).

Kubernetes on the other hand is built for containerized microservice applications from the bottom- up. Some notable features are:

–  Management of sets of pods. Pods consist of one or more co-located containers.

–  Networking functionalities through a pluggable overlay network

–  Self-healing through controller concept comparing expected with current state

–  Declarative style configuration

–  Load balancing functionalities

–  Rolling updates of different versions of workloads

–  Integrations in many monitoring and logging solutions

–  Hooks to integrate external persistent storage in pods

–  Service discovery and routing

What Kubernetes lacks at this time is a proper high-throughput batch job queueing system with a sophisticated rule system for managing resource allocations. But one of the main drawbacks we see is that traditional HPC engineering applications are not yet built to interact with Kubernetes. But this will change in the future. New kinds of AI workloads on the other hand are supporting Kubernetes already very well – in fact many of these packages are targeted to Kubernetes.

Can HPC Workload Be Managed by Kubernetes?

We should combine both Kubernetes and HPC workload-management systems to fully meet the HPC requirements. Kubernetes will be used for managing HPC containers along with all the required services. Inside the containers, not just the engineering application can be run, but also the capability to either plug into an existing HPC cluster or run an entire HPC resource manager installation (like SLURM or Univa Grid Engine) needs to be provided. In that way, we can provide compatibility to the engineering applications and can exploit the extended batch scheduling capabilities. At the same time our whole deployment can be operated in all Kubernetes enabled environments with the advantages of standardized container orchestration.

Ease of Administration

HPC environments consist of a potentially large set of containers. The higher abstraction of container orchestration compared to self-managing container single runtime engines provides the necessary flexibility we need to fulfill different customer requirements. Management operations like scaling the deployment are much simpler to implement and execute.

The Run-Time for Hybrid and Multi-Cloud Offers True Portability

Portability is a key value of containers. Kubernetes provides us this portability for fleets of containers. We can have the same experience on-premises as well as on different cloud infrastructures. Engineers can seamlessly switch the infrastructure without any changes for the engineers. In that way we can choose the infrastructure by criteria like price, performance, and capabilities. When running on premises we can start offering true hybrid-cloud experience by providing a consistent infrastructure with the same operational and HPC application experience and seamlessly use on-demand cloud resources when required.

What’s Next?

Embracing Kubernetes for the specific requirements of HPC and engineering workload is not straight forward. But due to the success of Kubernetes and its open and extensible architecture the ecosystem is opening up for HPC applications primarily driven by the demand of new AI workloads and HPC containers.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. This article is based on a white paper they wrote detailing their experience using UberCloud HPC containers and Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Rapid Chip Design in the Cloud

Time-to-market and engineering efficiency are the most critical and expensive metrics for a chip design company. With this in mind, the team at Annapurna Labs selected Altair AcceleratorRead more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This