Kubernetes, Containers and HPC

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs.

Recently, high performance computing (HPC) is moving closer to the enterprise and can therefore benefit from an HPC container and Kubernetes ecosystem, with new requirements to quickly allocate and deallocate computational resources to HPC workloads. Compute capacity, be it for enterprise or HPC workloads, can no longer be planned years in advance.

Getting on-demand resources from a shared compute resource pool has never been easier as cloud service providers and software vendors are continuously investing and improving their services. In enterprise computing, packaging software in container images and running containers is meanwhile standard. Kubernetes has become the most widely used container and resource orchestrator in the Fortune 500 companies. The HPC community, led by efforts in the AI community, is picking up the concept and applying it to batch jobs and interactive applications.

Containers and HPC: Why Should We Care?

HPC leaders have a hard time. There are lots of changes and new ways of thinking in software technology and IT operations. Containerization have become ubiquitous; container orchestration with Kubernetes is the new standard. Deep learning workloads are continuously increasing their footprint, and Site Reliability Engineering (SRE) has been adopted on many sites. It is very hard for each of the new technologies to judge their usefulness for HPC type of workloads.

Introduction to Kubernetes

If your engineers or operators are running a single container on their laptop, they probably use Docker for doing that. But when having multiples of containers potentially on dozens or hundreds of machines, it becomes difficult to get them maintained. Kubernetes simplifies container orchestration by providing scheduling, container life-cycle management, networking functionalities and more in a scalable and extensible platform.

Major components of Kubernetes are the Kubernetes master which contains an API server, scheduler, and a controller manager. Controllers are a main concept: they watch out for the current state of resources and compare them with the expected state. If they differ, they take actions to move to an expected state. On the execution side we have the kubelet which is in contact with the master as well as a network proxy. The kubelet manages containers by using the container runtime interface (CRI) for interacting with runtimes like Docker, containerd, or CRI-O.

Running Kubernetes or HPC Schedulers?

Kubernetes is doing workload and resource management. Sounds familiar? Yes, in many ways it shares lots of functionalities with traditional HPC workload managers. The main differences are the workload types they focus on. While HPC workload managers are focused on running distributed memory jobs and support high-throughput scenarios, Kubernetes is primarily built for orchestrating containerized microservice applications.

HPC workload managers like Univa Grid Engine added a huge number of features in the last decades. Some notable functionalities are:

–  Support for shared and distributed memory (like MPI based) jobs

–  Advance reservations for allocating and blocking resources in advance

–  Fair-share to customize resource usage patterns across users, projects, and departments

–  Resource reservation for collecting resources for large jobs

–  Preemption for stopping low prior jobs in favor for running high prior jobs

–  NUMA aware scheduling for automatically allocating cores and sockets

–  Adhere to standards for job submission and management (like DRMAA and DRMAAv2)

HPC workload managers are tuned for speed, throughput, and scalability, being capable of running millions of batch jobs a day and supporting the infrastructure of the largest supercomputers in the world. What traditional HPC workload managers lack are means for supporting microservice architectures, deeply integrated container management capabilities, network management, and application life-cycle management. They are primarily built for running batch jobs in different scenarios like high-throughput, MPI jobs spanning across potentially hundreds or thousands of nodes, jobs running weeks, or jobs using special resource types (GPUs, FPGAs, licenses, etc.).

Kubernetes on the other hand is built for containerized microservice applications from the bottom- up. Some notable features are:

–  Management of sets of pods. Pods consist of one or more co-located containers.

–  Networking functionalities through a pluggable overlay network

–  Self-healing through controller concept comparing expected with current state

–  Declarative style configuration

–  Load balancing functionalities

–  Rolling updates of different versions of workloads

–  Integrations in many monitoring and logging solutions

–  Hooks to integrate external persistent storage in pods

–  Service discovery and routing

What Kubernetes lacks at this time is a proper high-throughput batch job queueing system with a sophisticated rule system for managing resource allocations. But one of the main drawbacks we see is that traditional HPC engineering applications are not yet built to interact with Kubernetes. But this will change in the future. New kinds of AI workloads on the other hand are supporting Kubernetes already very well – in fact many of these packages are targeted to Kubernetes.

Can HPC Workload Be Managed by Kubernetes?

We should combine both Kubernetes and HPC workload-management systems to fully meet the HPC requirements. Kubernetes will be used for managing HPC containers along with all the required services. Inside the containers, not just the engineering application can be run, but also the capability to either plug into an existing HPC cluster or run an entire HPC resource manager installation (like SLURM or Univa Grid Engine) needs to be provided. In that way, we can provide compatibility to the engineering applications and can exploit the extended batch scheduling capabilities. At the same time our whole deployment can be operated in all Kubernetes enabled environments with the advantages of standardized container orchestration.

Ease of Administration

HPC environments consist of a potentially large set of containers. The higher abstraction of container orchestration compared to self-managing container single runtime engines provides the necessary flexibility we need to fulfill different customer requirements. Management operations like scaling the deployment are much simpler to implement and execute.

The Run-Time for Hybrid and Multi-Cloud Offers True Portability

Portability is a key value of containers. Kubernetes provides us this portability for fleets of containers. We can have the same experience on-premises as well as on different cloud infrastructures. Engineers can seamlessly switch the infrastructure without any changes for the engineers. In that way we can choose the infrastructure by criteria like price, performance, and capabilities. When running on premises we can start offering true hybrid-cloud experience by providing a consistent infrastructure with the same operational and HPC application experience and seamlessly use on-demand cloud resources when required.

What’s Next?

Embracing Kubernetes for the specific requirements of HPC and engineering workload is not straight forward. But due to the success of Kubernetes and its open and extensible architecture the ecosystem is opening up for HPC applications primarily driven by the demand of new AI workloads and HPC containers.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. This article is based on a white paper they wrote detailing their experience using UberCloud HPC containers and Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This