D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

By John Russell

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Last week a Google draft paper, discovered by the Financial Times, claimed attaining Quantum Supremacy using a 53-qubit superconducting processor. The paper found on NASA’s website was later withdrawn. Conversation around it has been bubbling in the QC community since.

More on D-Wave’s announcements later – the Advantage system isn’t expected to be broadly available until mid-2020 which is roughly in keeping with its stated plans. The Google work on quantum supremacy is fascinating. Google has declined to comment on the paper. How FT became aware of the paper isn’t clear. A few observers suggest it looks like an early draft.

Quantum supremacy, of course, is the notion of a quantum computer doing something that classical computers simply can’t reasonably do. In this instance, the reported Google paper claimed it was able to perform as task (a particular random number generation) on its QC in 200 seconds versus what would take on the order 10,000 years on a supercomputer. In an archived copy of the draft that HPCwire was able to find, the authors say they “estimated the classical computational cost” of running supremacy circuits on Summit and on a large Google cluster. (For an excellent discussion of quantum supremacy see Scott Aaronson’s (University of Texas) blog yesterday, Scott’s Supreme Quantum Supremacy FAQ)

It seems likely the work was done. The real question is whether it’s important. Many have argued chasing quantum supremacy is mostly a stunt with no practical use-case. Many in this camp argue pursuing quantum advantage – when a quantum computer can do a practical task sufficiently better than a classical computer to warrant switching – is a better metric. IBM, D-Wave, Rigetti – all businesses hoping to sell quantum computers or access to their quantum computers – incline towards this view.

That said, achieving quantum supremacy does seem to be a big deal. Here’s an excerpt from the copy HPCwire reviewed, again, assuming it is a version of the real document:

“In reaching this milestone, we show that quantum speedup is achievable in a real-world system and is not precluded by any hidden physical laws. Quantum supremacy also heralds the era of Noisy Intermediate-Scale Quantum (NISQ) technologies. The benchmark task we demonstrate has an immediate application in generating certifiable random numbers; other initial uses for this new computational capability may include optimization, machine learning, materials science and chemistry. However, realizing the full promise of quantum computing (e.g. Shor’s algorithm for factoring) still requires technical leaps to engineer fault-tolerant logical qubits.

“To achieve quantum supremacy, we made a number of technical advances which also pave the way towards error correction. We developed fast, high-fidelity gates that can be executed simultaneously across a two-dimensional qubit array. We calibrated and benchmarked the processor at both the component and system level using a powerful new tool: cross-entropy benchmarking (XEB). Finally, we used component-level fidelities to accurately predict the performance of the whole system, further showing that quantum information behaves as expected when scaling to large systems.”

One physicist who has read the draft is Andrew Sornborger. He studies novel computational architectures including quantum computing at Los Alamos National Lab. Sornborger was enthusiastic about the achievement, if proven, and proffered a cautionary note about early response.

“They’ve done some amazing engineering and experimental physics in order to get this done over many years. I feel like this is a milestone in and of itself,” Sornborger told HPCwire. “I do think, the community will wait until the publication. [Y]ou’re looking at this paper, first of all, it looks like an old version. We don’t know what might have happened. We don’t know if it’s in peer review yet. We just know that somehow, some version of something slipped out.”

Intel quickly waded in with praise: “Google’s recent update on the achievement of quantum supremacy is a notable mile marker as we continue to advance the potential of quantum computing. Achieving a commercially viable quantum computer will require advancements across a number of pillars of the technology stack,” said Jim Clarke, director of quantum hardware, Intel Labs. “We along with the industry are working to quickly advance all of those areas to realize the true potential of quantum computing. And while development is still at mile one of this the marathon, we strongly believe in the potential of this technology.”

There’s really not a lot more to say without having the finalized paper available. Again, Scott Aaronson’s blog is a good reprise of issues surrounding quantum supremacy (QS). QS has always seemed something of a theoretical activity but that’s changing.

Sornborger said, “I think people are probably going to be looking at quantum supremacy but from a perspective of trying to do real stuff right now. For instance a lot of my work is near-term both on machine learning on quantum computers and also quantum simulation methods. Looking at Google’s apparatus, they have some mechanisms that might be useful for us. [These] different quantum computing architectures have different things that can be useful in different situations. So on much more practical level we’re going to be looking to try and use these architectures.”

Pivoting to D-Wave, last February the quantum annealing pioneer released its 18-month technology roadmap that included enhancements throughout its ecosystem (see HPCwire article, D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits). Since then D-Wave has been steadily rolling out incremental advance including, for example, achieving lower noise on its 2000 qubit system which it reports provides a 25x performance on one type of problem (spin glass application).

Today, in addition to reviewing progress so far on its roadmap, D-Wave provided a few more details on its 5000 Qubit system named Advantage and revealed its first order for the system. D-Wave noted wryly the name was carefully considered. It has been pushing what it calls “customer advantage”, pretty much the same thing as quantum advantage, and presumably believes its forthcoming 5000-qubit system will enable that.

“D-Wave’s entire technical path – from selling the first commercial quantum computer in 2011 to today – has been focused on enabling customer advantage, or, customers’ ability to see business benefit from using quantum computers compared to their existing classical solutions,” according to the company.

5000 qubits is a lot of qubits. D-Wave didn’t provide many specific details of technology enhancements but said, “It was wholly redesigned and architected from top-to-bottom to handle business applications. It has the most connected quantum topology in the world, increasing problem size/complexity and improving computation speed, precision, and overall performance. This will be the first quantum computer specifically built for business applications.”

Actually, the first customer for the new Advantage system is Los Alamos National Laboratory (LANL), a long-time customer of D-Wave’s which announced it signed a contract to upgrade to the Advantage quantum system on-premise when it becomes available. LANL is a multidisciplinary research institution engaged in strategic science to address national security priorities. To-date, LANL and its collaborators have built over 60 early quantum applications and conducted essential research in a diverse range of domains.

Hybrid approach and workflow platform helps developers build and run quantum hybrid applications in Leap cloud service, accelerating application development. Image courtesy of D-Wave Systems.

“This is the third time we will have upgraded our D-Wave system. Each upgrade has enabled new research into developing quantum algorithms and new tools in support of Los Alamos’ national security mission,” said Irene Qualters, associate laboratory director for simulation and computation at Los Alamos National Laboratory, quoted in the official announcement. “Quantum computing is a critical area of research for Los Alamos, and our researchers are excited about getting access to D-Wave’s Advantage quantum system.”

Most users will gain access to the Advantage via D-Wave’s LEAP web-based platform.

Expectations are that the new lower-noise design in the Advantage quantum system will improve performance the scope of problems that can be tackled. D-Wave has published two white papers describing clear improvements in performance of the lower-noise 2000Q processor, compared to the previous 2000Q system. The lower-noise processor, was made available to customers via Leap in May, shows improved precision and better tunneling, and can lead to significant speedups on problems of interest to quantum application developers, according to D-Wave. We’ll have to wait for benchmarks on the new system.

Another area of emphasis for D-Wave, as for many in the QC community, is optimizing the hybrid approach to quantum computing. What’s meant here is not just making control electronics more efficient and nearby (lowering latency) but optimizing algorithms such that the portions best suited for the quantum processor are run on it while other portions are optimized for classical systems. All quantum computers are in fact blended systems in which classical computers play an essential role.

D-Wave’s open source hybrid platform was released in June and includes:

  • Hybrid workflow control: enables rapid development of hybrid applications that can run across classical, the current D-Wave 2000Q™ family, and future quantum systems
  • Modular approach: incorporates logic to simplify distribution of classical and quantum tasks, allowing developers to interrupt and synchronize across the systems and draw maximum computing power out of each system
  • Problem deconstruction: capable of breaking down large problems that are bigger than the quantum processing unit (QPU) into parts that are then recombined for the overall solution
  • Familiar coding environment: familiar Python-based framework and documentation includes examples that make it easy to get started without knowledge of quantum mechanics
  • Flexibility: includes a number of example hybrid workflows, allowing developers to explore which workflows are best for the problem they are solving
  • Leap quantum system access and Quantum Application Environment (QAE): free, real-time access to the D-Wave 2000Q family of systems and QAE resources, including learning tools, and community and technical forums for easy developer collaboration

Not least at this week’s user conference will be presentations around application development including by tool-makers seeking to develop domain specific tools for use on quantum computers. D-Wave singled out CogniFrame, a financial services company that develops hybrid optimization solutions to help banks improve their return on assets. Here’s a quote from D-Wave’s official news announcement.

“CogniFrame’s financial services operating system built on top of D-Wave’s quantum systems helps solve “intractable” and computationally intensive non-convex and stochastic optimization problems for financial institutions, thus improving their return on assets. Our hybrid optimization solution helps banks arrive at the optimal composition of capital and assets while reducing costs, enhancing returns, and maintaining an appropriate risk level. We work closely with D-Wave to more quickly build and run optimization algorithms across hybrid classical and quantum systems,” said Vish R, CogniFrame chief executive officer and founder.

Expansion of the quantum computing ecosystem to include ISVs and solution providers is an important ongoing activity as QC moves towards practical utility. Over the course of the next two dozen speakers will cover, among other things:

  • Implementing Quantum Applications in Financial Institutions
  • Practical Usage of Quantum Annealing in Industrial Applications
  • Computing Protein Binding using Quantum Annealing
  • Delivering Value with Quantum Computing: Kidney Exchange Network

D-Wave reports, “The new applications add to the more than 150 existing early customer-developed applications in areas as diverse as financial modeling, airline scheduling, election modeling, quantum chemistry simulation, automotive design, preventative healthcare, logistics, and more. Many users have also developed software tools that simplify application development. These existing applications and tools, and the vibrant user community, give developers a wealth of examples to learn from and build upon. The delivery of the Advantage quantum system will expand the variety, performance, precision, and breadth of quantum applications.”

Link to D-Wave announcement: https://www.dwavesys.com/press-releases/what’s-name-d-wave-unveils-next-generation-system-name-announces-first-next

Feature Image: D-Wave’s Pegasus topology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Quantum Clouds, Interatomic Models, Genetic Algorithms & More

February 14, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or at least, pull off the cloud HPC equivalent. As part of thei Read more…

By Oliver Peckham

ORNL Team Develops AI-based Cancer Text Mining Tool on Summit

February 13, 2020

A group of Oak Ridge National Laboratory researchers working on the Summit supercomputer has developed a new neural network tool for fast extraction of information from cancer pathology reports to speed research and clin Read more…

By John Russell

Nature Serves up Another Challenge to Quantum Computing?

February 13, 2020

Just when you thought it was safe to assume quantum computing – though distant – would eventually succumb to clever technology, another potentially confounding factor pops up. It’s the Heisenberg Limit (HL), close Read more…

By John Russell

Researchers Enlist Three Supercomputers to Apply Deep Learning to Extreme Weather

February 12, 2020

When it comes to extreme weather, an errant forecast can have serious effects. While advance warning can give people time to prepare for the weather as it did with the polar vortex last year, the absence of accurate adva Read more…

By Oliver Peckham

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops peak, HPC5 should easily crack the top ten fold of the next T Read more…

By Tiffany Trader

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Intel Stopping Nervana Development to Focus on Habana AI Chips

February 3, 2020

Just two months after acquiring Israeli AI chip start-up Habana Labs for $2 billion, Intel is stopping development of its existing Nervana neural network proces Read more…

By John Russell

Lise Supercomputer, Part of HLRN-IV, Begins Operations

January 29, 2020

The second phase of the build-out of HLRN-IV – the planned 16 peak-petaflops supercomputer serving the North-German Supercomputing Alliance (HLRN) – is unde Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This