D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

By John Russell

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Last week a Google draft paper, discovered by the Financial Times, claimed attaining Quantum Supremacy using a 53-qubit superconducting processor. The paper found on NASA’s website was later withdrawn. Conversation around it has been bubbling in the QC community since.

More on D-Wave’s announcements later – the Advantage system isn’t expected to be broadly available until mid-2020 which is roughly in keeping with its stated plans. The Google work on quantum supremacy is fascinating. Google has declined to comment on the paper. How FT became aware of the paper isn’t clear. A few observers suggest it looks like an early draft.

Quantum supremacy, of course, is the notion of a quantum computer doing something that classical computers simply can’t reasonably do. In this instance, the reported Google paper claimed it was able to perform as task (a particular random number generation) on its QC in 200 seconds versus what would take on the order 10,000 years on a supercomputer. In an archived copy of the draft that HPCwire was able to find, the authors say they “estimated the classical computational cost” of running supremacy circuits on Summit and on a large Google cluster. (For an excellent discussion of quantum supremacy see Scott Aaronson’s (University of Texas) blog yesterday, Scott’s Supreme Quantum Supremacy FAQ)

It seems likely the work was done. The real question is whether it’s important. Many have argued chasing quantum supremacy is mostly a stunt with no practical use-case. Many in this camp argue pursuing quantum advantage – when a quantum computer can do a practical task sufficiently better than a classical computer to warrant switching – is a better metric. IBM, D-Wave, Rigetti – all businesses hoping to sell quantum computers or access to their quantum computers – incline towards this view.

That said, achieving quantum supremacy does seem to be a big deal. Here’s an excerpt from the copy HPCwire reviewed, again, assuming it is a version of the real document:

“In reaching this milestone, we show that quantum speedup is achievable in a real-world system and is not precluded by any hidden physical laws. Quantum supremacy also heralds the era of Noisy Intermediate-Scale Quantum (NISQ) technologies. The benchmark task we demonstrate has an immediate application in generating certifiable random numbers; other initial uses for this new computational capability may include optimization, machine learning, materials science and chemistry. However, realizing the full promise of quantum computing (e.g. Shor’s algorithm for factoring) still requires technical leaps to engineer fault-tolerant logical qubits.

“To achieve quantum supremacy, we made a number of technical advances which also pave the way towards error correction. We developed fast, high-fidelity gates that can be executed simultaneously across a two-dimensional qubit array. We calibrated and benchmarked the processor at both the component and system level using a powerful new tool: cross-entropy benchmarking (XEB). Finally, we used component-level fidelities to accurately predict the performance of the whole system, further showing that quantum information behaves as expected when scaling to large systems.”

One physicist who has read the draft is Andrew Sornborger. He studies novel computational architectures including quantum computing at Los Alamos National Lab. Sornborger was enthusiastic about the achievement, if proven, and proffered a cautionary note about early response.

“They’ve done some amazing engineering and experimental physics in order to get this done over many years. I feel like this is a milestone in and of itself,” Sornborger told HPCwire. “I do think, the community will wait until the publication. [Y]ou’re looking at this paper, first of all, it looks like an old version. We don’t know what might have happened. We don’t know if it’s in peer review yet. We just know that somehow, some version of something slipped out.”

Intel quickly waded in with praise: “Google’s recent update on the achievement of quantum supremacy is a notable mile marker as we continue to advance the potential of quantum computing. Achieving a commercially viable quantum computer will require advancements across a number of pillars of the technology stack,” said Jim Clarke, director of quantum hardware, Intel Labs. “We along with the industry are working to quickly advance all of those areas to realize the true potential of quantum computing. And while development is still at mile one of this the marathon, we strongly believe in the potential of this technology.”

There’s really not a lot more to say without having the finalized paper available. Again, Scott Aaronson’s blog is a good reprise of issues surrounding quantum supremacy (QS). QS has always seemed something of a theoretical activity but that’s changing.

Sornborger said, “I think people are probably going to be looking at quantum supremacy but from a perspective of trying to do real stuff right now. For instance a lot of my work is near-term both on machine learning on quantum computers and also quantum simulation methods. Looking at Google’s apparatus, they have some mechanisms that might be useful for us. [These] different quantum computing architectures have different things that can be useful in different situations. So on much more practical level we’re going to be looking to try and use these architectures.”

Pivoting to D-Wave, last February the quantum annealing pioneer released its 18-month technology roadmap that included enhancements throughout its ecosystem (see HPCwire article, D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits). Since then D-Wave has been steadily rolling out incremental advance including, for example, achieving lower noise on its 2000 qubit system which it reports provides a 25x performance on one type of problem (spin glass application).

Today, in addition to reviewing progress so far on its roadmap, D-Wave provided a few more details on its 5000 Qubit system named Advantage and revealed its first order for the system. D-Wave noted wryly the name was carefully considered. It has been pushing what it calls “customer advantage”, pretty much the same thing as quantum advantage, and presumably believes its forthcoming 5000-qubit system will enable that.

“D-Wave’s entire technical path – from selling the first commercial quantum computer in 2011 to today – has been focused on enabling customer advantage, or, customers’ ability to see business benefit from using quantum computers compared to their existing classical solutions,” according to the company.

5000 qubits is a lot of qubits. D-Wave didn’t provide many specific details of technology enhancements but said, “It was wholly redesigned and architected from top-to-bottom to handle business applications. It has the most connected quantum topology in the world, increasing problem size/complexity and improving computation speed, precision, and overall performance. This will be the first quantum computer specifically built for business applications.”

Actually, the first customer for the new Advantage system is Los Alamos National Laboratory (LANL), a long-time customer of D-Wave’s which announced it signed a contract to upgrade to the Advantage quantum system on-premise when it becomes available. LANL is a multidisciplinary research institution engaged in strategic science to address national security priorities. To-date, LANL and its collaborators have built over 60 early quantum applications and conducted essential research in a diverse range of domains.

Hybrid approach and workflow platform helps developers build and run quantum hybrid applications in Leap cloud service, accelerating application development. Image courtesy of D-Wave Systems.

“This is the third time we will have upgraded our D-Wave system. Each upgrade has enabled new research into developing quantum algorithms and new tools in support of Los Alamos’ national security mission,” said Irene Qualters, associate laboratory director for simulation and computation at Los Alamos National Laboratory, quoted in the official announcement. “Quantum computing is a critical area of research for Los Alamos, and our researchers are excited about getting access to D-Wave’s Advantage quantum system.”

Most users will gain access to the Advantage via D-Wave’s LEAP web-based platform.

Expectations are that the new lower-noise design in the Advantage quantum system will improve performance the scope of problems that can be tackled. D-Wave has published two white papers describing clear improvements in performance of the lower-noise 2000Q processor, compared to the previous 2000Q system. The lower-noise processor, was made available to customers via Leap in May, shows improved precision and better tunneling, and can lead to significant speedups on problems of interest to quantum application developers, according to D-Wave. We’ll have to wait for benchmarks on the new system.

Another area of emphasis for D-Wave, as for many in the QC community, is optimizing the hybrid approach to quantum computing. What’s meant here is not just making control electronics more efficient and nearby (lowering latency) but optimizing algorithms such that the portions best suited for the quantum processor are run on it while other portions are optimized for classical systems. All quantum computers are in fact blended systems in which classical computers play an essential role.

D-Wave’s open source hybrid platform was released in June and includes:

  • Hybrid workflow control: enables rapid development of hybrid applications that can run across classical, the current D-Wave 2000Q™ family, and future quantum systems
  • Modular approach: incorporates logic to simplify distribution of classical and quantum tasks, allowing developers to interrupt and synchronize across the systems and draw maximum computing power out of each system
  • Problem deconstruction: capable of breaking down large problems that are bigger than the quantum processing unit (QPU) into parts that are then recombined for the overall solution
  • Familiar coding environment: familiar Python-based framework and documentation includes examples that make it easy to get started without knowledge of quantum mechanics
  • Flexibility: includes a number of example hybrid workflows, allowing developers to explore which workflows are best for the problem they are solving
  • Leap quantum system access and Quantum Application Environment (QAE): free, real-time access to the D-Wave 2000Q family of systems and QAE resources, including learning tools, and community and technical forums for easy developer collaboration

Not least at this week’s user conference will be presentations around application development including by tool-makers seeking to develop domain specific tools for use on quantum computers. D-Wave singled out CogniFrame, a financial services company that develops hybrid optimization solutions to help banks improve their return on assets. Here’s a quote from D-Wave’s official news announcement.

“CogniFrame’s financial services operating system built on top of D-Wave’s quantum systems helps solve “intractable” and computationally intensive non-convex and stochastic optimization problems for financial institutions, thus improving their return on assets. Our hybrid optimization solution helps banks arrive at the optimal composition of capital and assets while reducing costs, enhancing returns, and maintaining an appropriate risk level. We work closely with D-Wave to more quickly build and run optimization algorithms across hybrid classical and quantum systems,” said Vish R, CogniFrame chief executive officer and founder.

Expansion of the quantum computing ecosystem to include ISVs and solution providers is an important ongoing activity as QC moves towards practical utility. Over the course of the next two dozen speakers will cover, among other things:

  • Implementing Quantum Applications in Financial Institutions
  • Practical Usage of Quantum Annealing in Industrial Applications
  • Computing Protein Binding using Quantum Annealing
  • Delivering Value with Quantum Computing: Kidney Exchange Network

D-Wave reports, “The new applications add to the more than 150 existing early customer-developed applications in areas as diverse as financial modeling, airline scheduling, election modeling, quantum chemistry simulation, automotive design, preventative healthcare, logistics, and more. Many users have also developed software tools that simplify application development. These existing applications and tools, and the vibrant user community, give developers a wealth of examples to learn from and build upon. The delivery of the Advantage quantum system will expand the variety, performance, precision, and breadth of quantum applications.”

Link to D-Wave announcement: https://www.dwavesys.com/press-releases/what’s-name-d-wave-unveils-next-generation-system-name-announces-first-next

Feature Image: D-Wave’s Pegasus topology

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance computing and the advanced-scale AI market. Early customers Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerated for AI applications. Now, Amazon Web Services (AWS) is int Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testbed (AQT), which is based at Lawrence Berkeley National Labor Read more…

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

After launching its second-generation intelligence processing units (IPUs) in 2020, four years after emerging from stealth, Graphcore is now boosting its product line with its largest commercially-available IPU-based sys Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 577238446

Putting bitrates into perspective

Recently, we talked about the advances NICE DCV has made to push pixels from cloud-hosted desktops or applications over the internet even more efficiently than before. Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Rockport Networks Launches 300 Gbps Switchless Fabric, Reveals 396-Node Deployment at TACC

October 27, 2021

Rockport Networks emerged from stealth this week with the launch of its 300 Gbps switchless networking architecture focused on the needs of the high-performance Read more…

AWS Adds Gaudi-Powered, ML-Optimized EC2 DL1 Instances, Now in GA

October 27, 2021

As machine learning becomes a dominating use case for local and cloud computing, companies are racing to provide solutions specifically optimized and accelerate Read more…

Fireside Chat with LBNL’s Advanced Quantum Testbed Director

October 26, 2021

Last week, Irfan Siddiqi led a “fireside chat” with a few media and analysts to introduce the Department of Energy’s relatively new Advanced Quantum Testb Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire