Accelerating High Performance Computing (HPC) for Population-level Genomics

By Mileidy Giraldo, Ph.D.

September 30, 2019

The development of Next-Generation Sequencing (NGS) technologies in the late 2000’s led to a dramatic decrease in the cost of DNA sequencing. The advent of NGS coupled to the advancements in HPC storage and computing technologies at the time created the perfect storm for a deluge of genomics data. This confluence of events led to a pressing question: how best to put all this data to use?

A genome is an organism’s complete set of DNA and, as such, it ultimately determines all biological functions and the myriad of variations that make some of us susceptible while others immune to different diseases. Therefore, it is of great interest to the biomedical community to determine an individual’s genome, which is a process much like deciphering scrambled letters (genome sequencing) so one can assemble them into words (genome assembly) to write a book, (variant analysis).

Given the new affordability of NGS methods and the increased computing and storage capacities of the last decade, genomics can now be performed at the population level. Large national genomics initiatives such as the “UK Biobank,” the “All of Us program” in the US, Singapore’s “GenomeAsia,” “Genomics Thailand,” etc. are emerging all around the world. With goals of sequencing 500K to over 1M participants in a few years’ time, these country-wide efforts aim to capture the genetic variation of their people to make Precision Medicine a reality. With Precision Medicine the hope is to deliver individualized prevention, diagnosis, and treatment by leveraging knowledge from a person’s genetic background.

The greatest challenge such population-level genomics efforts face is scale: scaling up in input data from exomes (the portions of a genome that code information for protein synthesis) to whole genomes, as well as scaling up production (from a handful to tens of thousands of samples), and the corresponding challenges it creates for the HPC infrastructure. Exomes correspond to 1% of whole genomes and are small regions in genes dictating important biological functions. Yet, exomes cannot provide the comprehensive picture found in the remaining 99% of whole genomes. Exomes were traditionally sequenced because of their smaller size, lower cost, and faster processing. Today, many genomics centers around the world are making the transition from exome to whole-genome sequencing, while also trying to tackle unprecedented volumes of data from hundreds of thousands of patients.

Three out of the four analysis stages in genomics take place in the HPC environment of a cluster or supercomputer, including genome assembly (assembling the DNA letters into words), variant analyses (comparing how a word/gene is spelled in different people), and downstream bioinformatics (measuring effect of variations on function/disease). Therefore, scaling out genomics productions largely depends on the HPC technologies made available to the genomics applications.

With these dependencies in mind, Lenovo set out to identify which technologies bring the most acceleration to genomics workflows. To that end, we conducted a systematic study of the performance of hundreds of parameters on 30+ tools in the Broad Institute’s Genome Analysis Tool Kit (GATK) Germline Variant Calling Workflow against hundreds of permutations of hardware building blocks, system tunings, data types (exomes, whole genomes), execution modes (latency vs. throughput), and software implementations (e.g. standard vs. Spark, etc.).

Today, it still takes a typical datacenter 150-160 hrs. to process a single whole genome and 4-6 hrs. for an exome. In 2017, Intel’s work on BIGstack (Intel’s reference architecture for GATK workflows) reduced processing times to 10.8 hr. and 25 min, respectively. As a result of Lenovo’s permutation tests of the hardware, software, and system factors affecting the performance of genomics workflows we identified an optimized architecture that can process 1 whole genome in 5.5 hrs. and 1 exome in 4 minutes with no specialty hardware. With Lenovo’s genomics optimized hardware, a data center can expect to process 4.5 genomes or 343 exomes per node per day. Some genomics solutions out there promise processing times around 3-4 hr. for a whole genome but require expensive, specialized hardware that does not scale well for large volumes and licensing proprietary software. Lenovo’s optimized genomics architecture on the other hand, provides a 27X to 40X performance improvement on non-specialty hardware, and does so in a manner that is more affordable, more scalable, and reduces costs by leveraging open-source software that is validated and widely-accepted by the scientific community.

Another byproduct of Lenovo’s systematic genomics performance testing was the ability to generate a fluid rather than a static refence architecture for genomics as is the norm in the HPC industry. Every genomics data center adopts a different mix of workloads, analyses workflows, has different active and archiving storage needs, a different mix of research types to support, and therefore needs a customized architecture tailored to their specific needs. Thus, we converted the lessons learned from our genomics benchmarking and systematic testing into formulas captured in an industry-first Genomics Sizing Tool.

Lenovo’s Genomics Sizing Tool calculates the projected HPC usage for an expected workload; for example, it outputs the compute nodes, active, and archive storage needed to meet a workload quota (e.g., 50K genomes/yr.). The Sizing Tool can also be used to size the current production capabilities of an existing cluster: e.g., to answer the questions of “[H]ow many genomes can I process with my current cluster?,” Or, “[H]ow many genomes/yr. can this year’s budget afford me?”

We are leveraging both Lenovo’s optimized architecture and the Genomics Sizing Tool to help data centers around the world accelerate their workflows and plan their HPC resources more effectively as they embark on ever increasing workloads from cohort-level and population-level genomics projects. Lenovo’s team of Genomics experts work together with the data center’s researchers, developers, and HPC experts to create custom HPC usage designs projecting data growth over time, designing data flow, storage, and management across the cluster. These exercises in HPC usage and projections are proving invaluable in workload management, budget planning, IT expenditure justification and allocation, and resource accountability. Through its commitment to developing and adopting cutting-edge technological innovation, Lenovo is enabling the worldwide movement to sequence entire populations, bringing such initiatives closer to making precision medicine a reality, and delivering on its promise of Smarter Technology for All. A white paper will soon follow with a detailed description of the systematic permutation tests and benchmarks alluded to here as well as the resulting optimizations and Genomics Sizing Tool accelerating and sizing the HPC resources for deploying genomics at scale.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This