Accelerating High Performance Computing (HPC) for Population-level Genomics

By Mileidy Giraldo, Ph.D.

September 30, 2019

The development of Next-Generation Sequencing (NGS) technologies in the late 2000’s led to a dramatic decrease in the cost of DNA sequencing. The advent of NGS coupled to the advancements in HPC storage and computing technologies at the time created the perfect storm for a deluge of genomics data. This confluence of events led to a pressing question: how best to put all this data to use?

A genome is an organism’s complete set of DNA and, as such, it ultimately determines all biological functions and the myriad of variations that make some of us susceptible while others immune to different diseases. Therefore, it is of great interest to the biomedical community to determine an individual’s genome, which is a process much like deciphering scrambled letters (genome sequencing) so one can assemble them into words (genome assembly) to write a book, (variant analysis).

Given the new affordability of NGS methods and the increased computing and storage capacities of the last decade, genomics can now be performed at the population level. Large national genomics initiatives such as the “UK Biobank,” the “All of Us program” in the US, Singapore’s “GenomeAsia,” “Genomics Thailand,” etc. are emerging all around the world. With goals of sequencing 500K to over 1M participants in a few years’ time, these country-wide efforts aim to capture the genetic variation of their people to make Precision Medicine a reality. With Precision Medicine the hope is to deliver individualized prevention, diagnosis, and treatment by leveraging knowledge from a person’s genetic background.

The greatest challenge such population-level genomics efforts face is scale: scaling up in input data from exomes (the portions of a genome that code information for protein synthesis) to whole genomes, as well as scaling up production (from a handful to tens of thousands of samples), and the corresponding challenges it creates for the HPC infrastructure. Exomes correspond to 1% of whole genomes and are small regions in genes dictating important biological functions. Yet, exomes cannot provide the comprehensive picture found in the remaining 99% of whole genomes. Exomes were traditionally sequenced because of their smaller size, lower cost, and faster processing. Today, many genomics centers around the world are making the transition from exome to whole-genome sequencing, while also trying to tackle unprecedented volumes of data from hundreds of thousands of patients.

Three out of the four analysis stages in genomics take place in the HPC environment of a cluster or supercomputer, including genome assembly (assembling the DNA letters into words), variant analyses (comparing how a word/gene is spelled in different people), and downstream bioinformatics (measuring effect of variations on function/disease). Therefore, scaling out genomics productions largely depends on the HPC technologies made available to the genomics applications.

With these dependencies in mind, Lenovo set out to identify which technologies bring the most acceleration to genomics workflows. To that end, we conducted a systematic study of the performance of hundreds of parameters on 30+ tools in the Broad Institute’s Genome Analysis Tool Kit (GATK) Germline Variant Calling Workflow against hundreds of permutations of hardware building blocks, system tunings, data types (exomes, whole genomes), execution modes (latency vs. throughput), and software implementations (e.g. standard vs. Spark, etc.).

Today, it still takes a typical datacenter 150-160 hrs. to process a single whole genome and 4-6 hrs. for an exome. In 2017, Intel’s work on BIGstack (Intel’s reference architecture for GATK workflows) reduced processing times to 10.8 hr. and 25 min, respectively. As a result of Lenovo’s permutation tests of the hardware, software, and system factors affecting the performance of genomics workflows we identified an optimized architecture that can process 1 whole genome in 5.5 hrs. and 1 exome in 4 minutes with no specialty hardware. With Lenovo’s genomics optimized hardware, a data center can expect to process 4.5 genomes or 343 exomes per node per day. Some genomics solutions out there promise processing times around 3-4 hr. for a whole genome but require expensive, specialized hardware that does not scale well for large volumes and licensing proprietary software. Lenovo’s optimized genomics architecture on the other hand, provides a 27X to 40X performance improvement on non-specialty hardware, and does so in a manner that is more affordable, more scalable, and reduces costs by leveraging open-source software that is validated and widely-accepted by the scientific community.

Another byproduct of Lenovo’s systematic genomics performance testing was the ability to generate a fluid rather than a static refence architecture for genomics as is the norm in the HPC industry. Every genomics data center adopts a different mix of workloads, analyses workflows, has different active and archiving storage needs, a different mix of research types to support, and therefore needs a customized architecture tailored to their specific needs. Thus, we converted the lessons learned from our genomics benchmarking and systematic testing into formulas captured in an industry-first Genomics Sizing Tool.

Lenovo’s Genomics Sizing Tool calculates the projected HPC usage for an expected workload; for example, it outputs the compute nodes, active, and archive storage needed to meet a workload quota (e.g., 50K genomes/yr.). The Sizing Tool can also be used to size the current production capabilities of an existing cluster: e.g., to answer the questions of “[H]ow many genomes can I process with my current cluster?,” Or, “[H]ow many genomes/yr. can this year’s budget afford me?”

We are leveraging both Lenovo’s optimized architecture and the Genomics Sizing Tool to help data centers around the world accelerate their workflows and plan their HPC resources more effectively as they embark on ever increasing workloads from cohort-level and population-level genomics projects. Lenovo’s team of Genomics experts work together with the data center’s researchers, developers, and HPC experts to create custom HPC usage designs projecting data growth over time, designing data flow, storage, and management across the cluster. These exercises in HPC usage and projections are proving invaluable in workload management, budget planning, IT expenditure justification and allocation, and resource accountability. Through its commitment to developing and adopting cutting-edge technological innovation, Lenovo is enabling the worldwide movement to sequence entire populations, bringing such initiatives closer to making precision medicine a reality, and delivering on its promise of Smarter Technology for All. A white paper will soon follow with a detailed description of the systematic permutation tests and benchmarks alluded to here as well as the resulting optimizations and Genomics Sizing Tool accelerating and sizing the HPC resources for deploying genomics at scale.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire