Try Before You Buy? Test Driving a Supercomputer System

By Alex Nodeland, CEO, Archanan

October 7, 2019

In a recent HPCwire article, it was revealed that DARPA is working to optimize programming approaches with the goal of increasing the performance of parallel systems. This is a worthwhile goal, and one that is squarely inline with our vision at Archanan, where we have developed a cloud platform to help speed research and development cycles by providing tools and environments that enable programmers to develop and test applications in real-time, at scale. Our goal is to help maximize the organizational utility of any existing supercomputer (and/or other complex computing systems), while speeding up the tendering and procurement process for system vendors by allowing engineers to develop and test applications on a virtualized model of the future system.

Interestingly enough, the DARPA article notes that “one possible approach to more efficient development of executable HPC code would be accurate modeling and prediction of component performance within a full-blown HPC platform.” As fate would have it, this is exactly what we have developed at Archanan, and are currently rolling out at supercomputing centers across Asia.

We have developed a cloud-based platform in which an organization is able to administer a digital twin of their supercomputing system, emulating every component; from the storage and memory, down to the compute and fabric, thus enabling development and testing of an at scale system without tying up the production system itself. Using the Archanan Development Cloud, organizations are able to administer personal Integrated Development Environments (IDEs) in the Archanan Cloud that mimics their own system. This helps to create new, efficient workflows that eliminate testing bottlenecks and port-over failures associated with not being able to pre-test code at scale.

Through our rich background in supercomputing with several institutions, we have worked with many people in different roles across the high-performance computing community. We consistently hear about issues HPC developers are having with their workflows and are keenly aware that it is a very difficult challenge for an organization to change their development track after it has been deployed. The frustration always come down to the same challenges: over-subscribed test systems that aren’t up to scale with the production machine.

Our mission is to change this paradigm by adding value at the beginning of the lifecycle for a supercomputer by working with hardware manufacturers to provide emulation of their upcoming architectures. They, in turn, can share this virtualized hardware in the Archanan Development Cloud with their customers, thus providing a “test drive” of the system to help provide better estimates for the performance of the system and its elements during the tendering process. Imagine a research center being able to run their top five applications on a system during the tendering process, while making adjustments to the system to right-size its performance to match its application needs. This “at scale” test drive ability has previously been unavailable, but today, there is no reason for any organization to commit financial resources to these expensive systems without first giving them a thorough examination using cloud emulation.

This resource comes at an ideal time in the advancement of supercomputing systems as we see increasing numbers of hybrid machines and specialized, advanced applications like AI, where specific accelerators are being considered. In these cases, it’s very difficult to predict performance when you are working across many different types of hardware. We’ve seen many supercomputing centers either over-provisioning or under-provisioning particular hardware components of the larger system. This, of course, is largely dependent on the applications that are being run, and at what capacities, making it critical to be able to test-drive before committing to a system.

We’re also seeing an increasing number of machines with many processor architectures – multiple CPU architectures (Power, x86, ARM, etc.), accelerated by multiple accelerators (GPU, FPGA, etc.). Previously, it was very difficult to reliably gauge the performance of such a system, but today, we can provide a snapshot of the whole machine, providing accurate benchmarking while sampling it against the applications intended to be run on it.

The best part is that this ability is a single facet to the overall power of the Archanan Development Cloud. Once a system is requisitioned with specs fully determined, it may take upwards of two years before the purchasing organization will take custody of that system. Under the current paradigm, committing resources for development on that system is precarious because there is no way to accurately test the performance and portability of the applications being developed. However, with virtualized access to the machine, at-scale development can happen immediately. When an organization’s users have access to an emulated version of their future machine, production applications can be installed and ran as soon as the power is switched on. Simply put, the supercomputer can reach effectiveness more quickly if people can develop and optimize their applications at scale before the machine is delivered.

Additional possibilities exist as well. For organizations such as universities, where current access to production machines is very limited, independent virtualized clones of their system can be made available on an individual, account level basis. A university can feel less restricted in giving their students access to learn, explore, and experiment. Graduate students, undergrads, and anyone learning large-scale or parallel computing can have access to systems that look like the full machine. They can demonstrate production scale workloads and prepare their projects for a better chance at deployment on the physical machine. Virtualizing the production machine lowers the bar for access to it, while increasing the system’s value and effectiveness.

Users of Archanan will change their supercomputing processes for the better by lowering risk, eliminating bottlenecks and maximizing the utility of these valuable systems. We encourage any organization purchasing or building a supercomputing system to get in touch to discuss how we can help. For more information, please visit us at archanan.io, or download our solution brief.

Alex Nodeland is the CEO and Co-founder of Archanan.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This