Try Before You Buy? Test Driving a Supercomputer System

By Alex Nodeland, CEO, Archanan

October 7, 2019

In a recent HPCwire article, it was revealed that DARPA is working to optimize programming approaches with the goal of increasing the performance of parallel systems. This is a worthwhile goal, and one that is squarely inline with our vision at Archanan, where we have developed a cloud platform to help speed research and development cycles by providing tools and environments that enable programmers to develop and test applications in real-time, at scale. Our goal is to help maximize the organizational utility of any existing supercomputer (and/or other complex computing systems), while speeding up the tendering and procurement process for system vendors by allowing engineers to develop and test applications on a virtualized model of the future system.

Interestingly enough, the DARPA article notes that “one possible approach to more efficient development of executable HPC code would be accurate modeling and prediction of component performance within a full-blown HPC platform.” As fate would have it, this is exactly what we have developed at Archanan, and are currently rolling out at supercomputing centers across Asia.

We have developed a cloud-based platform in which an organization is able to administer a digital twin of their supercomputing system, emulating every component; from the storage and memory, down to the compute and fabric, thus enabling development and testing of an at scale system without tying up the production system itself. Using the Archanan Development Cloud, organizations are able to administer personal Integrated Development Environments (IDEs) in the Archanan Cloud that mimics their own system. This helps to create new, efficient workflows that eliminate testing bottlenecks and port-over failures associated with not being able to pre-test code at scale.

Through our rich background in supercomputing with several institutions, we have worked with many people in different roles across the high-performance computing community. We consistently hear about issues HPC developers are having with their workflows and are keenly aware that it is a very difficult challenge for an organization to change their development track after it has been deployed. The frustration always come down to the same challenges: over-subscribed test systems that aren’t up to scale with the production machine.

Our mission is to change this paradigm by adding value at the beginning of the lifecycle for a supercomputer by working with hardware manufacturers to provide emulation of their upcoming architectures. They, in turn, can share this virtualized hardware in the Archanan Development Cloud with their customers, thus providing a “test drive” of the system to help provide better estimates for the performance of the system and its elements during the tendering process. Imagine a research center being able to run their top five applications on a system during the tendering process, while making adjustments to the system to right-size its performance to match its application needs. This “at scale” test drive ability has previously been unavailable, but today, there is no reason for any organization to commit financial resources to these expensive systems without first giving them a thorough examination using cloud emulation.

This resource comes at an ideal time in the advancement of supercomputing systems as we see increasing numbers of hybrid machines and specialized, advanced applications like AI, where specific accelerators are being considered. In these cases, it’s very difficult to predict performance when you are working across many different types of hardware. We’ve seen many supercomputing centers either over-provisioning or under-provisioning particular hardware components of the larger system. This, of course, is largely dependent on the applications that are being run, and at what capacities, making it critical to be able to test-drive before committing to a system.

We’re also seeing an increasing number of machines with many processor architectures – multiple CPU architectures (Power, x86, ARM, etc.), accelerated by multiple accelerators (GPU, FPGA, etc.). Previously, it was very difficult to reliably gauge the performance of such a system, but today, we can provide a snapshot of the whole machine, providing accurate benchmarking while sampling it against the applications intended to be run on it.

The best part is that this ability is a single facet to the overall power of the Archanan Development Cloud. Once a system is requisitioned with specs fully determined, it may take upwards of two years before the purchasing organization will take custody of that system. Under the current paradigm, committing resources for development on that system is precarious because there is no way to accurately test the performance and portability of the applications being developed. However, with virtualized access to the machine, at-scale development can happen immediately. When an organization’s users have access to an emulated version of their future machine, production applications can be installed and ran as soon as the power is switched on. Simply put, the supercomputer can reach effectiveness more quickly if people can develop and optimize their applications at scale before the machine is delivered.

Additional possibilities exist as well. For organizations such as universities, where current access to production machines is very limited, independent virtualized clones of their system can be made available on an individual, account level basis. A university can feel less restricted in giving their students access to learn, explore, and experiment. Graduate students, undergrads, and anyone learning large-scale or parallel computing can have access to systems that look like the full machine. They can demonstrate production scale workloads and prepare their projects for a better chance at deployment on the physical machine. Virtualizing the production machine lowers the bar for access to it, while increasing the system’s value and effectiveness.

Users of Archanan will change their supercomputing processes for the better by lowering risk, eliminating bottlenecks and maximizing the utility of these valuable systems. We encourage any organization purchasing or building a supercomputing system to get in touch to discuss how we can help. For more information, please visit us at archanan.io, or download our solution brief.

Alex Nodeland is the CEO and Co-founder of Archanan.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

NSF Awards $11M to SDSC, MIT and Univ. of Oregon to Secure the Internet

October 14, 2021

From a security standpoint, the internet is a problem. The infrastructure developed decades ago has cracked, leaked and been patched up innumerable times, leaving vulnerabilities that are difficult to address due to cost Read more…

SC21 Announces Science and Beyond Plenary: the Intersection of Ethics and HPC

October 13, 2021

The Intersection of Ethics and HPC will be the guiding topic of SC21's Science & Beyond plenary, inspired by the event tagline of the same name. The evening event will be moderated by Daniel Reed with panelists Crist Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

AWS Solution Channel

Cost optimizing Ansys LS-Dyna on AWS

Organizations migrate their high performance computing (HPC) workloads from on-premises infrastructure to Amazon Web Services (AWS) for advantages such as high availability, elastic capacity, latest processors, storage, and networking technologies; Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a province in Pavia, Italy), and delivered “as-a-service” via H Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Royalty-free stock illustration ID: 1938746143

MosaicML, Led by Naveen Rao, Comes Out of Stealth Aiming to Ease Model Training

October 15, 2021

With more and more enterprises turning to AI for a myriad of tasks, companies quickly find out that training AI models is expensive, difficult and time-consuming. Finding a new approach to deal with those cascading challenges is the aim of a new startup, MosaicML, that just came out of stealth... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

What’s Next for EuroHPC: an Interview with EuroHPC Exec. Dir. Anders Dam Jensen

October 7, 2021

One year after taking the post as executive director of the EuroHPC JU, Anders Dam Jensen reviews the project's accomplishments and details what's ahead as EuroHPC's operating period has now been extended out to the year 2027. Read more…

University of Bath Unveils Janus, an Azure-Based Cloud HPC Environment

October 6, 2021

The University of Bath is upgrading its HPC infrastructure, which it says “supports a growing and wide range of research activities across the University.” Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire