Using AI to Solve One of the Most Prevailing Problems in CFD

By James Sharpe

October 17, 2019

In this guest article, James Sharpe, MMATH, Lead for Big Data & Security at Zenotech, explores the application of AI technology to the challenge of computational mesh generation and the implications for engineering sectors.

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application to improve this previously time-consuming and iterative process. It has resulted in a mesh that is five to ten times more efficient than when generated manually. 

AI is attracting all the buzz right now, but inevitably, with the hype, the field has become awash with applications that are not designed to solve existing problems. There is undoubtedly a great temptation to use AI to improve CFD methods, often based on the raw substitution of AI data for simulation data. However, these tend not to work effectively, or to require orders of magnitude more training data than would be necessary to run the simulation. 

This investigation (led by Zenotech with AI specialists, AlgoLab) began with a comprehensive assessment of the potential for deploying AI technology into digital engineering processes. After a series of down-selects, the automated generation of computational meshes for a specialist application domain appeared as the likely candidate. 

The project concentrated on creating a reusable framework for training AI algorithms with real datasets. The process generated has been applied to the task of creating meshes for wind energy resource assessment, which is typically a time-pressured activity, where turnaround and accuracy are business-critical.

The new meshing process makes use of a set of rules, derived from physical properties of the terrain (height, gradient, curvature, terrain type) and the location of a specific point of interest. In the case of wind energy, this includes met masts, likely turbine locations or other existing data sources. Each rule is applied to every point on the terrain specification, with the AI algorithm responsible for determining the relative importance of each rule at each point and the appropriate set of parameter values that convert rules into mesh spacing. The resulting set of meshing instructions has O(1 million) variables for any given test case.  

As the training dataset relies on the repeated application of the real CFD-based wind analysis process (which is computationally expensive) and a comparison with a known highly accurate solution, the AI approach is designed to evaluate the minimum number of points to learn the parameter space. A Gaussian Process Model was selected as the most natural choice for this problem.

The implementation of the AI process makes use of the GPFlowOpt Python library (Knudde et al, 2017) using TensorFlow, with a Matern52 statistical covariance function. An initial 300 points were selected using LatinHyperCube sampling (equivalent to N rooks on a chessboard without threatening each other). New points to be evaluated are implemented using Hypervolume-based Probability of Improvement method [Ivo Couckuyt et al, 2014l] providing a fast calculation of the multi-objective probability of improvement and expected improvement criteria for Pareto optimization. (see Journal of Global Optimization, Vol 60, pp 575 – 594). 

The Hypervolume method constructs a Pareto front to select the next points to evaluate. Two objective functions are defined to be minimized: (i) the cell count in generated mesh (a good measure of the expense of the CFD simulation), and (ii) the RMS error of the generated flow solution at experimental data points. The resulting Pareto front and associated parameter settings at each point compose a lookup table that provides the optimal meshing rules for a given level of accuracy.  

The process can now be run automatically, and typically generates a mesh that is five to 10 times more efficient than one created manually. A vast number of training datasets have been produced in the process. Another benefit is that the process parameters are generic and therefore can be applied to new test cases without the need for additional training.  

The use of commodity computing and advanced hardware via EPIC, an online portal to high performance computing was a vital component. This delivers the scalability and processing power to (affordably) train datasets based on numerical experiments.

The results have led to process improvements that have already been deployed on two commercial projects, supporting growth and export in the wind energy sector. These types of projects have typically relied on lower-fidelity computational engineering methods to deliver timely results, and the new process makes it possible to deploy high-fidelity methods in the same timescale.   

The capability developed will now be further extended to include more data feedback to the automation process, and these methods can now be transferred to other engineering sectors.

About the Author 

James Sharpe is a specialist in computer science and software engineering at Zenotech Ltd. While at BAE Systems Advanced Technology Centre, James developed new mathematical algorithms for the latest in high performance computing hardware and led development teams in Applied Intelligence – working at the forefront of cybersecurity. James is the Zenotech lead for Big Data and Security. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire