Google Goes Public with Quantum Supremacy Achievement; IBM Disagrees

By John Russell

October 23, 2019

A month ago the Quantum world was abuzz following discovery of a paper on NASA’s website detailing Google’s supposed success at achieving quantum supremacy. The paper quickly disappeared from the site but copies were made and a general consensus emerged the work was likely genuine. Today Google confirmed the work in a big way with the cover article on Nature’s 150th anniversary issue, a blog by John Martinis and Sergio Boixo, Google’s top quantum researchers, an article by Google CEO Sundar Pichai on the significance of the achievement, and conference call briefing from London with media.

That’s one way to recoup lost “wow power” from an accidentally leaked paper. In their blog, Martinis and Boixo label the work as “The first experimental challenge against the extended Church-Turing thesis, which states that classical computers can efficiently implement any ‘reasonable’ model of computation.” Martinis and Boixo declare, “With the first quantum computation that cannot reasonably be emulated on a classical computer, we have opened up a new realm of computing to be explored.”

Much of what’s being publically disclosed today was known from the leaked paper. Google used a new 54-bit quantum processor – Sycamore – which features a 2D grid in which each qubit is connected to four other qubits and has higher fidelity two-qubit “gates.” Google also says the improvements in Sycamore are forwardly compatible with much needed quantum error correction schemes. Using Sycamore, Google solved a problem (a kind of random number generator) in 200 seconds that would take on the order of 10,000 years on today’s fastest supercomputers. In this instance they used DOE’s Summit supercomputer for the estimate calculation.

“The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects,” wrote Martinis and Boixo.

Here’s how Google describes the project in the abstract of its Nature paper:

“A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253(about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm.”

Not so fast says IBM.

Rival quantum pioneer IBM has disputed the Google claim in a blog – “Recent advances in quantum computing have resulted in two 53-qubit processors: one from our group in IBM and a device described by Google in a paper published in the journal Nature. In the paper, it is argued that their device reached “quantum supremacy” and that “a state-of-the-art supercomputer would require approximately 10,000 years to perform the equivalent task.” We argue that an ideal simulation of the same task can be performed on a classical system in 2.5 days and with far greater fidelity. This is in fact a conservative, worst-case estimate, and we expect that with additional refinements the classical cost of the simulation can be further reduced.”

Whether it’s sour grapes, a valid claim, or something in between will become clearer in time. Even if IBM’s classical approach is better than the one chosen by Google, it is still takes longer than the 200 seconds Google’s Sycamore chip required. (For an excellent insider’s view on the controversy see Scott Aaronson’s blog, Quantum Supremacy: the gloves are off)

John Martinis, Google

In response to questioning about Big Blue’s objection, Martinis frankly noted there is an unavoidable “moving target” element in chasing quantum supremacy as classical systems and quantum systems each constantly advance (hardware and algorithms) but he didn’t waiver over the current Google claim. “We expect in the future that the quantum computers will vastly outstrip what’s going on with these [new classical computing] algorithms. We see no reason to doubt that so I encourage people to read the paper,” said Martinis.

Debate has swirled around the race for Quantum Supremacy since the term was coined. Detractors call it a gimmicky trick without bearing on real-world applications or quantum machines. Advocates argue it not only proves the conceptual case for quantum computing but also will pave the way for useful quantum computing because of the technologies the race to achieve quantum supremacy will produce. The latter seems certainly true but is sometimes overwhelmed by the desire to deploy practically useful quantum computing sooner rather than later.

Many contend that attaining Quantum Advantage – the notion of performing a task sufficiently better on a quantum computer to warrant switching from a classical machine – is more important in today’s era of so-called noisy quantum computers which are prone to error.

To put the quantum error correction (QEC) challenge into perspective, consider this excerpt from a recent paper by Georgia Tech researchers Swamit Tannu Moinuddin Qureshi on the topic: “Near-term quantum computers face significant reliability challenges as the qubits are extremely fickle and error-prone. Furthermore, with a limited number of qubits, implementing quantum error correction (QEC) may not be possible as QEC require 20 to 50 physical qubit devices to build a single fault-tolerant qubit. Therefore, fault-tolerant quantum computing is likely to become viable only when we have a system with thousands of qubits. In the meanwhile, the near-term quantum computes with several dozens of qubits are expected to operate in a noisy environment without any error correction using a model of computation called as Noisy Intermediate Scale Quantum (NISQ) Computing.”  (BTW, Tannu and Qureshi’s paper is a good, accessible, and fast read on several key quantum computing error correction issues and on approaches to mitigate them.)

It is interesting to dig a bit into the Google work. As in most R&D efforts there are unexpected twists and turns. You may remember the Bristlecone quantum processor, a 72-qubit device that Google was promoting roughly a year ago. The plans were to keep pushing that work. However a second team was working on a chip with an adjustable coupling mechanism for four qubits. The latter had some advantages and the researchers fairly quickly scaled it to 18 qubits.

“We thought we could get to quantum supremacy [with that approach] and we just moved over all the research and focused on [it],” recalled Martinis. However the added circuitry on Sycamore required for more wires (and space) for mounting; as a result it could only be scaled to 54 qubits at the time. And when the first 54-qubit Sycamore was manufactured one of its mounting wires broke, turning it into a 53-qubit device. Even so that device performed well enough to do the quantum supremacy calculation. Martinis said they’re now able to handle wiring more efficiently and will be able to scale up the number of qubits. He says they have three or four Sycamore processors now in the lab.

For those of you so inclined here’s a bit more technical detail on the chip taken from the paper:

“The processor is fabricated using aluminium for metallization and Josephson junctions, and indium for bump-bonds between two silicon wafers. The chip is wire-bonded to a superconducting circuit board and cooled to below 20 mK in a dilution refrigerator to reduce ambient thermal energy to well below the qubit energy. The processor is connected through filters and attenuators to room-temperature electronics, which synthesize the control signals. The state of all qubits can be read simultaneously by using a frequency-multiplexing technique. We use two stages of cryogenic amplifiers to boost the signal, which is digitized (8 bits at 1 GHz) and demultiplexed digitally at room temperature. In total, we orchestrate 277 digital-to-analog converters (14 bits at 1 GHz) for complete control of the quantum processor.

“We execute single-qubit gates by driving 25-ns microwave pulses resonant with the qubit frequency while the qubit–qubit coupling is turned off. The pulses are shaped to minimize transitions to higher transmon states. Gate performance varies strongly with frequency owing to two-level-system defects, stray microwave modes, coupling to control lines and the readout resonator, residual stray coupling between qubits, flux noise and pulse distortions. We therefore optimize the single-qubit operation frequencies to mitigate these error mechanisms.”

It’s good to remember the engineering challenges being faced. All of the wiring, just like the chip itself, must operate in a dilution refrigerator at extremely low temps. As the number of wires grow – i.e. to accommodate the increasing number of qubits – there’s likely to be heat losses affecting scalability for these systems. Asked how many qubits can be squeezed into a dilution refrigerator – thousands or millions – Martinis said, “For thousands, we believe yes. We do see a pathway forward…but we’ll be building a scientific instrument that is really going to have to bring a lot of new technologies.”

More qubits are needed in general for most applications. Consider rendering RSA encryption ineffective, one of the most talked about quantum computing applications. Martinis said, “Breaking RSA is going to take, let’s say, 100 million physical qubits. And you know, right now we’re at what is it? 53. So, that’s going to take a few years.”

That’s the rub for quantum computing generally. Martinis went so far as to call the exercise run on Sycamore (most of the work was in the spring) to be a practical application: “We’re excited that there’s a first useful application. It’s a little bit ‘nichey’, but there will be a real application there as developers work with it.”

Perhaps more immediately concrete are nascent Google plans to offer access to its quantum systems via a web portal. “We actually are using the Sycamore chip now internally to do internal experiments and test our interface to [determine] whether we can use it in this manner [as part of a portal access]. Then we plan to do a cloud offering. We’re not talking about it yet but next year people will be using it… internal people and collaborators first, and then opening it up,” said Martinis. IBM, Rigetti Computing, and D-Wave all currently offer web-based access to their systems spanning a wide variety of development tools, educational resources, simulation, and run-time on quantum processors.

In his blog, Google CEO Pichai said:

“For those of us working in science and technology, it’s the “hello world” moment we’ve been waiting for—the most meaningful milestone to date in the quest to make quantum computing a reality. But we have a long way to go between today’s lab experiments and tomorrow’s practical applications; it will be many years before we can implement a broader set of real-world applications.

“We can think about today’s news in the context of building the first rocket that successfully left Earth’s gravity to touch the edge of space. At the time, some asked: Why go into space without getting anywhere useful? But it was a big first for science because it allowed humans to envision a totally different realm of travel … to the moon, to Mars, to galaxies beyond our own. It showed us what was possible and nudged the seemingly impossible into frame.”

Over the next few days there will be a chorus of opinion. Treading the line between recognizing real achievement and not fanning fires of unrealistic expectation is an ongoing challenge for the quantum computing community. Oak Ridge touted the role of Summit in support of the work and issued a press release  –  “This experiment establishes that today’s quantum computers can outperform the best conventional computing for a synthetic benchmark,” said ORNL researcher and Director of the laboratory’s Quantum Computing Institute Travis Humble. “There have been other efforts to try this, but our team is the first to demonstrate this result on a real system.”

Intel, which waded in enthusiastically when the unsanctioned paper was first discovered, did so again today in a blog by Rich Ulig, Intel senior fellow and managing director of Intel Labs:

“Bolstered by this exciting news, we should now turn our attention to the steps it will take to build a system that will enable us to address intractable challenges – in other words, to demonstrate “quantum practicality.” To get a sense of what it would take to achieve quantum practicality, Intel researchers used our high-performance quantum simulator to predict the point at which a quantum computer could outpace a supercomputer in solving an optimization problem called Max-Cut. We chose Max-Cut as a test case because it is widely used in everything from traffic management to electronic design, and because it is an algorithm that gets exponentially more complicated as the number of variables increases.

“In our study, we compared a noise-tolerant quantum algorithm with a state-of-the art classical algorithm on a range of Max-Cut problems of increasing size. After extensive simulations, our research suggests it will take at least hundreds, if not thousands, of qubits working reliably before quantum computers will be able to solve practical problems faster than supercomputers…In other words, it may be years before the industry can develop a functional quantum processor of this size, so there is still work to be done.”

While practical quantum computing may be years away, the Google breakthrough seems impressive. Time will tell. Google’s quantum program is roughly 13-years-old, begun by Google scientist Hartmut Nevin in 2006. Martinis joined the effort in 2014 and set up the Google AI Quantum Team. It will be interesting to watch how it rolls out its web access program and what the quantum community reaction is. No firm timeline for the web portal was mentioned.

Link to Nature paper: https://www.nature.com/articles/s41586-019-1666-5

Link to Martinis’ and Boixo’s blog: https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Link to Pichai blog: https://blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This