Google Goes Public with Quantum Supremacy Achievement; IBM Disagrees

By John Russell

October 23, 2019

A month ago the Quantum world was abuzz following discovery of a paper on NASA’s website detailing Google’s supposed success at achieving quantum supremacy. The paper quickly disappeared from the site but copies were made and a general consensus emerged the work was likely genuine. Today Google confirmed the work in a big way with the cover article on Nature’s 150th anniversary issue, a blog by John Martinis and Sergio Boixo, Google’s top quantum researchers, an article by Google CEO Sundar Pichai on the significance of the achievement, and conference call briefing from London with media.

That’s one way to recoup lost “wow power” from an accidentally leaked paper. In their blog, Martinis and Boixo label the work as “The first experimental challenge against the extended Church-Turing thesis, which states that classical computers can efficiently implement any ‘reasonable’ model of computation.” Martinis and Boixo declare, “With the first quantum computation that cannot reasonably be emulated on a classical computer, we have opened up a new realm of computing to be explored.”

Much of what’s being publically disclosed today was known from the leaked paper. Google used a new 54-bit quantum processor – Sycamore – which features a 2D grid in which each qubit is connected to four other qubits and has higher fidelity two-qubit “gates.” Google also says the improvements in Sycamore are forwardly compatible with much needed quantum error correction schemes. Using Sycamore, Google solved a problem (a kind of random number generator) in 200 seconds that would take on the order of 10,000 years on today’s fastest supercomputers. In this instance they used DOE’s Summit supercomputer for the estimate calculation.

“The success of the quantum supremacy experiment was due to our improved two-qubit gates with enhanced parallelism that reliably achieve record performance, even when operating many gates simultaneously. We achieved this performance using a new type of control knob that is able to turn off interactions between neighboring qubits. This greatly reduces the errors in such a multi-connected qubit system. We made further performance gains by optimizing the chip design to lower crosstalk, and by developing new control calibrations that avoid qubit defects,” wrote Martinis and Boixo.

Here’s how Google describes the project in the abstract of its Nature paper:

“A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253(about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm.”

Not so fast says IBM.

Rival quantum pioneer IBM has disputed the Google claim in a blog – “Recent advances in quantum computing have resulted in two 53-qubit processors: one from our group in IBM and a device described by Google in a paper published in the journal Nature. In the paper, it is argued that their device reached “quantum supremacy” and that “a state-of-the-art supercomputer would require approximately 10,000 years to perform the equivalent task.” We argue that an ideal simulation of the same task can be performed on a classical system in 2.5 days and with far greater fidelity. This is in fact a conservative, worst-case estimate, and we expect that with additional refinements the classical cost of the simulation can be further reduced.”

Whether it’s sour grapes, a valid claim, or something in between will become clearer in time. Even if IBM’s classical approach is better than the one chosen by Google, it is still takes longer than the 200 seconds Google’s Sycamore chip required. (For an excellent insider’s view on the controversy see Scott Aaronson’s blog, Quantum Supremacy: the gloves are off)

John Martinis, Google

In response to questioning about Big Blue’s objection, Martinis frankly noted there is an unavoidable “moving target” element in chasing quantum supremacy as classical systems and quantum systems each constantly advance (hardware and algorithms) but he didn’t waiver over the current Google claim. “We expect in the future that the quantum computers will vastly outstrip what’s going on with these [new classical computing] algorithms. We see no reason to doubt that so I encourage people to read the paper,” said Martinis.

Debate has swirled around the race for Quantum Supremacy since the term was coined. Detractors call it a gimmicky trick without bearing on real-world applications or quantum machines. Advocates argue it not only proves the conceptual case for quantum computing but also will pave the way for useful quantum computing because of the technologies the race to achieve quantum supremacy will produce. The latter seems certainly true but is sometimes overwhelmed by the desire to deploy practically useful quantum computing sooner rather than later.

Many contend that attaining Quantum Advantage – the notion of performing a task sufficiently better on a quantum computer to warrant switching from a classical machine – is more important in today’s era of so-called noisy quantum computers which are prone to error.

To put the quantum error correction (QEC) challenge into perspective, consider this excerpt from a recent paper by Georgia Tech researchers Swamit Tannu Moinuddin Qureshi on the topic: “Near-term quantum computers face significant reliability challenges as the qubits are extremely fickle and error-prone. Furthermore, with a limited number of qubits, implementing quantum error correction (QEC) may not be possible as QEC require 20 to 50 physical qubit devices to build a single fault-tolerant qubit. Therefore, fault-tolerant quantum computing is likely to become viable only when we have a system with thousands of qubits. In the meanwhile, the near-term quantum computes with several dozens of qubits are expected to operate in a noisy environment without any error correction using a model of computation called as Noisy Intermediate Scale Quantum (NISQ) Computing.”  (BTW, Tannu and Qureshi’s paper is a good, accessible, and fast read on several key quantum computing error correction issues and on approaches to mitigate them.)

It is interesting to dig a bit into the Google work. As in most R&D efforts there are unexpected twists and turns. You may remember the Bristlecone quantum processor, a 72-qubit device that Google was promoting roughly a year ago. The plans were to keep pushing that work. However a second team was working on a chip with an adjustable coupling mechanism for four qubits. The latter had some advantages and the researchers fairly quickly scaled it to 18 qubits.

“We thought we could get to quantum supremacy [with that approach] and we just moved over all the research and focused on [it],” recalled Martinis. However the added circuitry on Sycamore required for more wires (and space) for mounting; as a result it could only be scaled to 54 qubits at the time. And when the first 54-qubit Sycamore was manufactured one of its mounting wires broke, turning it into a 53-qubit device. Even so that device performed well enough to do the quantum supremacy calculation. Martinis said they’re now able to handle wiring more efficiently and will be able to scale up the number of qubits. He says they have three or four Sycamore processors now in the lab.

For those of you so inclined here’s a bit more technical detail on the chip taken from the paper:

“The processor is fabricated using aluminium for metallization and Josephson junctions, and indium for bump-bonds between two silicon wafers. The chip is wire-bonded to a superconducting circuit board and cooled to below 20 mK in a dilution refrigerator to reduce ambient thermal energy to well below the qubit energy. The processor is connected through filters and attenuators to room-temperature electronics, which synthesize the control signals. The state of all qubits can be read simultaneously by using a frequency-multiplexing technique. We use two stages of cryogenic amplifiers to boost the signal, which is digitized (8 bits at 1 GHz) and demultiplexed digitally at room temperature. In total, we orchestrate 277 digital-to-analog converters (14 bits at 1 GHz) for complete control of the quantum processor.

“We execute single-qubit gates by driving 25-ns microwave pulses resonant with the qubit frequency while the qubit–qubit coupling is turned off. The pulses are shaped to minimize transitions to higher transmon states. Gate performance varies strongly with frequency owing to two-level-system defects, stray microwave modes, coupling to control lines and the readout resonator, residual stray coupling between qubits, flux noise and pulse distortions. We therefore optimize the single-qubit operation frequencies to mitigate these error mechanisms.”

It’s good to remember the engineering challenges being faced. All of the wiring, just like the chip itself, must operate in a dilution refrigerator at extremely low temps. As the number of wires grow – i.e. to accommodate the increasing number of qubits – there’s likely to be heat losses affecting scalability for these systems. Asked how many qubits can be squeezed into a dilution refrigerator – thousands or millions – Martinis said, “For thousands, we believe yes. We do see a pathway forward…but we’ll be building a scientific instrument that is really going to have to bring a lot of new technologies.”

More qubits are needed in general for most applications. Consider rendering RSA encryption ineffective, one of the most talked about quantum computing applications. Martinis said, “Breaking RSA is going to take, let’s say, 100 million physical qubits. And you know, right now we’re at what is it? 53. So, that’s going to take a few years.”

That’s the rub for quantum computing generally. Martinis went so far as to call the exercise run on Sycamore (most of the work was in the spring) to be a practical application: “We’re excited that there’s a first useful application. It’s a little bit ‘nichey’, but there will be a real application there as developers work with it.”

Perhaps more immediately concrete are nascent Google plans to offer access to its quantum systems via a web portal. “We actually are using the Sycamore chip now internally to do internal experiments and test our interface to [determine] whether we can use it in this manner [as part of a portal access]. Then we plan to do a cloud offering. We’re not talking about it yet but next year people will be using it… internal people and collaborators first, and then opening it up,” said Martinis. IBM, Rigetti Computing, and D-Wave all currently offer web-based access to their systems spanning a wide variety of development tools, educational resources, simulation, and run-time on quantum processors.

In his blog, Google CEO Pichai said:

“For those of us working in science and technology, it’s the “hello world” moment we’ve been waiting for—the most meaningful milestone to date in the quest to make quantum computing a reality. But we have a long way to go between today’s lab experiments and tomorrow’s practical applications; it will be many years before we can implement a broader set of real-world applications.

“We can think about today’s news in the context of building the first rocket that successfully left Earth’s gravity to touch the edge of space. At the time, some asked: Why go into space without getting anywhere useful? But it was a big first for science because it allowed humans to envision a totally different realm of travel … to the moon, to Mars, to galaxies beyond our own. It showed us what was possible and nudged the seemingly impossible into frame.”

Over the next few days there will be a chorus of opinion. Treading the line between recognizing real achievement and not fanning fires of unrealistic expectation is an ongoing challenge for the quantum computing community. Oak Ridge touted the role of Summit in support of the work and issued a press release  –  “This experiment establishes that today’s quantum computers can outperform the best conventional computing for a synthetic benchmark,” said ORNL researcher and Director of the laboratory’s Quantum Computing Institute Travis Humble. “There have been other efforts to try this, but our team is the first to demonstrate this result on a real system.”

Intel, which waded in enthusiastically when the unsanctioned paper was first discovered, did so again today in a blog by Rich Ulig, Intel senior fellow and managing director of Intel Labs:

“Bolstered by this exciting news, we should now turn our attention to the steps it will take to build a system that will enable us to address intractable challenges – in other words, to demonstrate “quantum practicality.” To get a sense of what it would take to achieve quantum practicality, Intel researchers used our high-performance quantum simulator to predict the point at which a quantum computer could outpace a supercomputer in solving an optimization problem called Max-Cut. We chose Max-Cut as a test case because it is widely used in everything from traffic management to electronic design, and because it is an algorithm that gets exponentially more complicated as the number of variables increases.

“In our study, we compared a noise-tolerant quantum algorithm with a state-of-the art classical algorithm on a range of Max-Cut problems of increasing size. After extensive simulations, our research suggests it will take at least hundreds, if not thousands, of qubits working reliably before quantum computers will be able to solve practical problems faster than supercomputers…In other words, it may be years before the industry can develop a functional quantum processor of this size, so there is still work to be done.”

While practical quantum computing may be years away, the Google breakthrough seems impressive. Time will tell. Google’s quantum program is roughly 13-years-old, begun by Google scientist Hartmut Nevin in 2006. Martinis joined the effort in 2014 and set up the Google AI Quantum Team. It will be interesting to watch how it rolls out its web access program and what the quantum community reaction is. No firm timeline for the web portal was mentioned.

Link to Nature paper: https://www.nature.com/articles/s41586-019-1666-5

Link to Martinis’ and Boixo’s blog: https://ai.googleblog.com/2019/10/quantum-supremacy-using-programmable.html

Link to Pichai blog: https://blog.google/perspectives/sundar-pichai/what-our-quantum-computing-milestone-means

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire