AI-based Cancer Protein Simulation is Finalist for SC19 Best Paper

By John Russell

November 4, 2019

Accurate simulation of cancer-implicated proteins holds enormous promise for basic biomedical science and development of effective therapies, but the high computational cost required has long slowed progress. Recently a multi-institution research team developed a machine learning-based simulation for next-generation supercomputers capable of modeling protein interactions and mutations that play a role in many forms of cancer. Their work on simulating the RAS protein family will be published at SC19 and is a finalist for the Best Paper award.

RAS proteins are implicated in roughly one third of cancers, and research to obtain a more detailed understanding of how they interact with the cell’s lipid membranes and influence signaling pathways has long been pursued. One way to shortcut the simulations needed and to reduce the computational cost is to use ML to zoom in on areas of interest.

For its paper, the team simulated the interaction between RAS and eight of the most relevant lipids to investigate RAS dynamics and interaction. They simulated a 1-by-1 micrometer membrane patch with 300 different RAS proteins to analyze the membranes in order to generate statistically relevant observations that can be tested experimentally at Frederick National Laboratory for Cancer Research.

“We decided that instead of doing what traditionally has been done with simulations — taking a model membrane with one or two lipids — that we’d try to make it realistic and model a biologically relevant membrane,” said LLNL computational biologist Helgi Ingólfsson, a technical lead on the project. “The goal is to characterize RAS aggregation, RAS-protein interactions and RAS-lipid interactions, observing what types of lipids dictate RAS behavior and orient on the membrane. We want to see if we can modulate RAS activity with different types of lipids or some kind of pharmaceutical, not to eliminate RAS activity but modulate it in different ways, like promoting the inactive states.”

The research stems from a pilot project in the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) program, a collaboration between the Department of Energy’s (DOE) Office of Science, the National Nuclear Security Administration (NNSA) and National Cancer Institute (NCI) that is supported in part by the Cancer Moonshot. Researchers from Lawrence Livermore National Laboratory, Los Alamos National Laboratory, the National Cancer Institute, Frederick National Laboratory for Cancer Research (FNLCR), IBM, and other institutions participated.

An article describing the work is posted on the Lawrence Livermore National Lab website (light edited excerpt):

“The team began with a macro-model capable of simulating the impact of a lipid membrane on RAS proteins at long timescales and incorporated a machine learning algorithm to determine which lipid “patches” were interesting enough to model in more detail with a molecular-level micromodel. The result is a Massively parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI) that scales up efficiently on large, heterogenous high performance computing machines like LLNL’s Sierra and ORNL’s Summit.

“For the microscale model, the team used a molecular dynamics code adopted for the coarse-grained Martini model. It was adapted for GPUs to run on Sierra, making it likely the only general molecular dynamics code to run completely on GPUs, the researchers said. The work stretched the limits of the early access Sierra system, as each “patch,” representing an area of about 30 by 30 nanometers, contained about 140,000 coarse-grain beads and thousands of individual lipids.

“While the system was still in its unclassified environment, the team ran nearly 120,000 simulations on Sierra, taking 5.6 million GPU hours of compute time and generating a massive 320 terabytes of data. The number of simulations was “staggering,” researchers said, adding that the largest number of Martini simulations done at one time was only in the thousands prior to this project.

LLNL computer scientist and lead author Francesco Di Natale, who will present the paper at the conference.

Link to LLNL article: https://www.llnl.gov/news/lab-leads-effort-model-proteins-tied-cancer

Feature Art Caption:Lawrence Livermore National Laboratory researchers, along with scientists from Los Alamos National Laboratory, the National Cancer Institute and other institutions, are using machine learning as a virtual magnifying glass to study interesting regions of RAS protein/lipid simulations in higher detail. Credit: Tim Carpenter/LLNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire