It’s Probably a Duck

By Gilad Shainer, Mellanox Technologies

November 4, 2019

Interconnect battles have taken different paths over the years. There have been two main battles – the battle of “offload” based architectures vs. “onload” based architecture, and the battle of standard-based networks vs. proprietary-based networks.

It appears that the first battle has ended in favor of offload-based architectures, with InfiniBand markedly in leadership. Onload based architectures, including Pathscale InfiniPath and QLogic TrueScale, are not in the market anymore, and Intel Omni-Path development has stopped. The key advantages of offload-based architectures, namely the reduction of CPU utilization and the enablement of asynchronous progress, have proven to provide higher application performance.

The second battle is still ongoing. On one side you have InfiniBand and Ethernet as the main standard-based networks, while on the other side there is a list of proprietary-protocol networks including Myricom Myrinet, Quadrics QsNet, Intel Omni-Path, Cray Seastar, Cray Gemini, Fujitsu Tofu, Cray Aries, and the latest addition – Cray Slingshot. There were and are several other proprietary networks, but their usage was or is very minimal. From this list, Fujitsu Tofu and Cray Slingshot are the ones with existing development efforts.

Standards-based networks have multiple advantages over proprietary ones, including:

  • Backward and forward compatibility – the ability to connect old network generations to future network generations;
  • Robust software support and the ability to use the same software and applications on different network generations;
  • Established software ecosystem – the software drivers are typically part of the operating system distributions, and there is a large ecosystem of ISV support;
  • Established hardware ecosystem – including server, storage, management and more platforms;
  • Strong and more aggressive roadmap – with the large ecosystem support, there is no need to re-build the ecosystem over and over again, as in the case of proprietary networks. Therefore, standard network development can be focused on delivering better and faster generations to better meet the needs of future applications;
  • Advanced capabilities – due to the same reasons, we see that standards-based networks introduce better and more advanced capabilities vs. proprietary networks. For example, while congestion control has been native to InfiniBand for many years, it is just being introduced by Slingshot, to be deployed in 2020;
  • Investment protection – data center IT managers can re-use existing platforms with future platforms, protecting their financial investments for the long term.

The InfiniBand standard, developed by the InfiniBand Trade Association (IBTA), provides all of the above benefits and more. Therefore, it is the leading 200 gigabit-per-second end-to end interconnect technology for high performance computing, artificial intelligence, cloud, storage and more applications. It is highly scalable from hundreds of nodes to tens and hundreds of thousands of nodes, supports smart In-Network Computing engines to allow data algorithms to be executed by the network, provides extremely low latency, full transport offloads, remote direct memory access (RDMA), GPUDirect and other features.

Slingshot is probably based on a similar combination to that of the old Quadrics QsNet and Gnodal products. Gnodal technology was similar to the Quadrics technology approach, with added support for internal gateways to bridge the proprietary protocol to standard Ethernet, in order to offer Ethernet switch products to the market. Slingshot has a similar approach to Gnodal’s, namely to support two different network protocols: a proprietary network, and the ability to bridge over to standard Ethernet. Most, if not all, of the new features introduced by Cray, which did not exist in their previous proprietary network named Aries, are available obviously only with the proprietary Slingshot network, and not via the gate to the standard Ethernet connectivity.

Many years ago, Mellanox decided to bring together the two standard protocols, InfiniBand and Ethernet, into the same network adapter silicon devices (the ConnectX® family) and into the switch (named SwitchX®). The motivation, of course, was ease of use, as users can deploy one network, and decide later whether to use it as InfiniBand (high performance network) or Ethernet, or both at the same time. While combining InfiniBand and Ethernet on the network adapter has been a great success, the combination of the two protocols on the switch has created performance limitations, mainly due to increased switch latency. InfiniBand, designed as the ultimate software-defined network (SDN) and to deliver extremely low latency, suffered from the addition of Ethernet components, leading to increased switch latency. Therefore Mellanox decided to separate the protocols and create two switch device lines – one for InfiniBand (Mellanox Quantum™ family) and one for Ethernet (Mellanox Spectrum® family). With this change, InfiniBand switch devices demonstrate extremely low latency of ~100ns.

Ensuring lowest latency for high performance applications is one of the key elements for performance and scalability. If there is need to connect to external Ethernet networks, it is better to use external InfiniBand to Ethernet gateways, while ensuring lowest latency within the data center.

Slingshot design is similar to the old Mellanox SwitchX concept – supporting both a high-performance network (in this case the proprietary Slingshot) and the option to connect to standard Ethernet. With this approach one can save the external gateway boxes to Ethernet and connect the external Ethernet network directly to the Slingshot network, but the cost is an increase in latency. The Slingshot switch has 300ns latency, nearly 3 times higher than the InfiniBand switch devices. As such, a 2-switch layer InfiniBand network at full 200 gigabit per second connecting 800 nodes will have nearly the same latency of a single Slingshot switch device connecting 64 nodes. Obviously, it is better to use external gateway boxes rather than a switch silicon that embeds the gateway functionality and reduces performance for the data center applications.

The Slingshot proprietary network is the first of its kind — the same way all the previous proprietary networks were. Its major highlights are adaptive routing and congestion control, elements that have existed in InfiniBand for many years now. Moreover, InfiniBand offers also the SHIELD technology, bringing first to the market self-healing capabilities for resilient Exascale infrastructures, and many more other advantages.

Due to the disadvantages of proprietary network approaches compared to standards-based networks, proprietary network companies may try to market their products as “semi standards,” making claims, for example, that they have designed a “high performance” version of a standard network, in which they have modified the network protocol headers or packet sizes, and added new mechanisms for the network exchange protocols. Once one changes the network protocol, it is no longer the standard protocol. It is a proprietary protocol. If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

InfiniBand is the best choice for high performance computing infrastructure. It is a standard network protocol delivering: lowest latency, end-to-end 200 gigabit-per-second throughout today, In-Network Computing engines, Self-Healing engines, congestion control, adaptive routing, RDMA and more. InfiniBand is being used to connect the top supercomputers around the world, and it is designed to scale out and to support any network topology that can be created.

InfiniBand connected data centers can be directly connected to InfiniBand based storage platforms. And if there is need to connect to external Ethernet networks, one can use the 100 gigabit and 200 gigabit Mellanox Skyway™ InfiniBand-to-Ethernet gateway systems. InfiniBand also offers long-reach connectivity of 10 and 40 kilometers, enabling to connect remote data centers, remote storage or remote research offices directly to an InfiniBand supercomputer, with low latency, native RDMA, adaptive routing and support of Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ all the way. There are also third party products enabling to connect InfiniBand centers over thousands of miles.

With the IBTA roadmap guidelines, it appears that InfiniBand will demonstrate the 400 gigabit NDR speeds, while other proprietary products might finally support 200 gigabit for an end-to-end connectivity. Therefore, InfiniBand will continue to demonstrate leading performance and capabilities, protecting data center hardware and software investments, and delivering advantages one generation ahead.

Nothing against ducks. But when it comes to connecting high performance supercomputing infrastructures, ducks will not be your best choice…


References:

[1] https://www.hpcwire.com/2019/06/10/super-connecting-the-supercomputers/

[2] https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/

[3] https://www.hpcwire.com/2019/08/05/super-connecting-the-supercomputers-protect-your-network-investment/

[4] https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/

[5] https://www.hpcwire.com/2016/04/12/interconnect-offloading-versus-onloading/

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire