It’s Probably a Duck

By Gilad Shainer, Mellanox Technologies

November 4, 2019

Interconnect battles have taken different paths over the years. There have been two main battles – the battle of “offload” based architectures vs. “onload” based architecture, and the battle of standard-based networks vs. proprietary-based networks.

It appears that the first battle has ended in favor of offload-based architectures, with InfiniBand markedly in leadership. Onload based architectures, including Pathscale InfiniPath and QLogic TrueScale, are not in the market anymore, and Intel Omni-Path development has stopped. The key advantages of offload-based architectures, namely the reduction of CPU utilization and the enablement of asynchronous progress, have proven to provide higher application performance.

The second battle is still ongoing. On one side you have InfiniBand and Ethernet as the main standard-based networks, while on the other side there is a list of proprietary-protocol networks including Myricom Myrinet, Quadrics QsNet, Intel Omni-Path, Cray Seastar, Cray Gemini, Fujitsu Tofu, Cray Aries, and the latest addition – Cray Slingshot. There were and are several other proprietary networks, but their usage was or is very minimal. From this list, Fujitsu Tofu and Cray Slingshot are the ones with existing development efforts.

Standards-based networks have multiple advantages over proprietary ones, including:

  • Backward and forward compatibility – the ability to connect old network generations to future network generations;
  • Robust software support and the ability to use the same software and applications on different network generations;
  • Established software ecosystem – the software drivers are typically part of the operating system distributions, and there is a large ecosystem of ISV support;
  • Established hardware ecosystem – including server, storage, management and more platforms;
  • Strong and more aggressive roadmap – with the large ecosystem support, there is no need to re-build the ecosystem over and over again, as in the case of proprietary networks. Therefore, standard network development can be focused on delivering better and faster generations to better meet the needs of future applications;
  • Advanced capabilities – due to the same reasons, we see that standards-based networks introduce better and more advanced capabilities vs. proprietary networks. For example, while congestion control has been native to InfiniBand for many years, it is just being introduced by Slingshot, to be deployed in 2020;
  • Investment protection – data center IT managers can re-use existing platforms with future platforms, protecting their financial investments for the long term.

The InfiniBand standard, developed by the InfiniBand Trade Association (IBTA), provides all of the above benefits and more. Therefore, it is the leading 200 gigabit-per-second end-to end interconnect technology for high performance computing, artificial intelligence, cloud, storage and more applications. It is highly scalable from hundreds of nodes to tens and hundreds of thousands of nodes, supports smart In-Network Computing engines to allow data algorithms to be executed by the network, provides extremely low latency, full transport offloads, remote direct memory access (RDMA), GPUDirect and other features.

Slingshot is probably based on a similar combination to that of the old Quadrics QsNet and Gnodal products. Gnodal technology was similar to the Quadrics technology approach, with added support for internal gateways to bridge the proprietary protocol to standard Ethernet, in order to offer Ethernet switch products to the market. Slingshot has a similar approach to Gnodal’s, namely to support two different network protocols: a proprietary network, and the ability to bridge over to standard Ethernet. Most, if not all, of the new features introduced by Cray, which did not exist in their previous proprietary network named Aries, are available obviously only with the proprietary Slingshot network, and not via the gate to the standard Ethernet connectivity.

Many years ago, Mellanox decided to bring together the two standard protocols, InfiniBand and Ethernet, into the same network adapter silicon devices (the ConnectX® family) and into the switch (named SwitchX®). The motivation, of course, was ease of use, as users can deploy one network, and decide later whether to use it as InfiniBand (high performance network) or Ethernet, or both at the same time. While combining InfiniBand and Ethernet on the network adapter has been a great success, the combination of the two protocols on the switch has created performance limitations, mainly due to increased switch latency. InfiniBand, designed as the ultimate software-defined network (SDN) and to deliver extremely low latency, suffered from the addition of Ethernet components, leading to increased switch latency. Therefore Mellanox decided to separate the protocols and create two switch device lines – one for InfiniBand (Mellanox Quantum™ family) and one for Ethernet (Mellanox Spectrum® family). With this change, InfiniBand switch devices demonstrate extremely low latency of ~100ns.

Ensuring lowest latency for high performance applications is one of the key elements for performance and scalability. If there is need to connect to external Ethernet networks, it is better to use external InfiniBand to Ethernet gateways, while ensuring lowest latency within the data center.

Slingshot design is similar to the old Mellanox SwitchX concept – supporting both a high-performance network (in this case the proprietary Slingshot) and the option to connect to standard Ethernet. With this approach one can save the external gateway boxes to Ethernet and connect the external Ethernet network directly to the Slingshot network, but the cost is an increase in latency. The Slingshot switch has 300ns latency, nearly 3 times higher than the InfiniBand switch devices. As such, a 2-switch layer InfiniBand network at full 200 gigabit per second connecting 800 nodes will have nearly the same latency of a single Slingshot switch device connecting 64 nodes. Obviously, it is better to use external gateway boxes rather than a switch silicon that embeds the gateway functionality and reduces performance for the data center applications.

The Slingshot proprietary network is the first of its kind — the same way all the previous proprietary networks were. Its major highlights are adaptive routing and congestion control, elements that have existed in InfiniBand for many years now. Moreover, InfiniBand offers also the SHIELD technology, bringing first to the market self-healing capabilities for resilient Exascale infrastructures, and many more other advantages.

Due to the disadvantages of proprietary network approaches compared to standards-based networks, proprietary network companies may try to market their products as “semi standards,” making claims, for example, that they have designed a “high performance” version of a standard network, in which they have modified the network protocol headers or packet sizes, and added new mechanisms for the network exchange protocols. Once one changes the network protocol, it is no longer the standard protocol. It is a proprietary protocol. If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

InfiniBand is the best choice for high performance computing infrastructure. It is a standard network protocol delivering: lowest latency, end-to-end 200 gigabit-per-second throughout today, In-Network Computing engines, Self-Healing engines, congestion control, adaptive routing, RDMA and more. InfiniBand is being used to connect the top supercomputers around the world, and it is designed to scale out and to support any network topology that can be created.

InfiniBand connected data centers can be directly connected to InfiniBand based storage platforms. And if there is need to connect to external Ethernet networks, one can use the 100 gigabit and 200 gigabit Mellanox Skyway™ InfiniBand-to-Ethernet gateway systems. InfiniBand also offers long-reach connectivity of 10 and 40 kilometers, enabling to connect remote data centers, remote storage or remote research offices directly to an InfiniBand supercomputer, with low latency, native RDMA, adaptive routing and support of Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ all the way. There are also third party products enabling to connect InfiniBand centers over thousands of miles.

With the IBTA roadmap guidelines, it appears that InfiniBand will demonstrate the 400 gigabit NDR speeds, while other proprietary products might finally support 200 gigabit for an end-to-end connectivity. Therefore, InfiniBand will continue to demonstrate leading performance and capabilities, protecting data center hardware and software investments, and delivering advantages one generation ahead.

Nothing against ducks. But when it comes to connecting high performance supercomputing infrastructures, ducks will not be your best choice…


References:

[1] https://www.hpcwire.com/2019/06/10/super-connecting-the-supercomputers/

[2] https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/

[3] https://www.hpcwire.com/2019/08/05/super-connecting-the-supercomputers-protect-your-network-investment/

[4] https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/

[5] https://www.hpcwire.com/2016/04/12/interconnect-offloading-versus-onloading/

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Amid Upbeat Earnings, Intel to Cut 1% of Employees, Add as Many

January 24, 2020

For all the sniping two tech old timers take, both IBM and Intel announced surprisingly upbeat earnings this week. IBM CEO Ginny Rometty was all smiles at this week’s World Economic Forum in Davos, Switzerland, after  Read more…

By Doug Black

Indiana University Dedicates ‘Big Red 200’ Cray Shasta Supercomputer

January 24, 2020

After six months of celebrations, Indiana University (IU) officially marked its bicentennial on Monday – and it saved the best for last, inaugurating Big Red 200, a new AI-focused supercomputer that joins the ranks of Read more…

By Staff report

What’s New in HPC Research: Tsunamis, Wildfires, the Large Hadron Collider & More

January 24, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware. In fact, the company's simulated bifurcation algorithm is Read more…

By Tiffany Trader

Energy Research Combines HPC, 3D Manufacturing

January 23, 2020

A federal energy research initiative is gaining momentum with the release of a contract award aimed at using supercomputing to harness 3D printing technology that would boost the performance of power generators. Partn Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

TACC Highlights Its Upcoming ‘IsoBank’ Isotope Database

January 22, 2020

Isotopes – elemental variations that contain different numbers of neutrons – can help researchers unearth the past of an object, especially the few hundred isotopes that are known to be stable over time. However, iso Read more…

By Oliver Peckham

Toshiba Promises Quantum-Like Advantage on Standard Hardware

January 23, 2020

Toshiba has invented an algorithm that it says delivers a 10-fold improvement for a select class of computational problems, without the need for exotic hardware Read more…

By Tiffany Trader

In Advanced Computing and HPC, Dell EMC Sets Sights on the Broader Market Middle 

January 22, 2020

If the leading advanced computing/HPC server vendors were in the batting lineup of a baseball team, Dell EMC would be going for lots of singles and doubles – Read more…

By Doug Black

DNA-Based Storage Nears Scalable Reality with New $25 Million Project

January 21, 2020

DNA-based storage, which involves storing binary code in the four nucleotides that constitute DNA, has been a moonshot for high-density data storage since the 1960s. Since the first successful experiments in the 1980s, researchers have made a series of major strides toward implementing DNA-based storage at scale, such as improving write times and storage density and enabling easier file identification and extraction. Now, a new $25 million... Read more…

By Oliver Peckham

AMD Recruits Intel, IBM Execs; Pending Layoffs Reported at Intel Data Platform Group

January 17, 2020

AMD has raided Intel and IBM for new senior managers, one of whom will replace an AMD executive who has played a prominent role during the company’s recharged Read more…

By Doug Black

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

Summit Has Real-Time Analytics: Here’s How It Happened and What’s Next

October 3, 2019

Summit – the world’s fastest publicly-ranked supercomputer – now has real-time streaming analytics. At the 2019 HPC User Forum at Argonne National Laborat Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This