It’s Probably a Duck

By Gilad Shainer, Mellanox Technologies

November 4, 2019

Interconnect battles have taken different paths over the years. There have been two main battles – the battle of “offload” based architectures vs. “onload” based architecture, and the battle of standard-based networks vs. proprietary-based networks.

It appears that the first battle has ended in favor of offload-based architectures, with InfiniBand markedly in leadership. Onload based architectures, including Pathscale InfiniPath and QLogic TrueScale, are not in the market anymore, and Intel Omni-Path development has stopped. The key advantages of offload-based architectures, namely the reduction of CPU utilization and the enablement of asynchronous progress, have proven to provide higher application performance.

The second battle is still ongoing. On one side you have InfiniBand and Ethernet as the main standard-based networks, while on the other side there is a list of proprietary-protocol networks including Myricom Myrinet, Quadrics QsNet, Intel Omni-Path, Cray Seastar, Cray Gemini, Fujitsu Tofu, Cray Aries, and the latest addition – Cray Slingshot. There were and are several other proprietary networks, but their usage was or is very minimal. From this list, Fujitsu Tofu and Cray Slingshot are the ones with existing development efforts.

Standards-based networks have multiple advantages over proprietary ones, including:

  • Backward and forward compatibility – the ability to connect old network generations to future network generations;
  • Robust software support and the ability to use the same software and applications on different network generations;
  • Established software ecosystem – the software drivers are typically part of the operating system distributions, and there is a large ecosystem of ISV support;
  • Established hardware ecosystem – including server, storage, management and more platforms;
  • Strong and more aggressive roadmap – with the large ecosystem support, there is no need to re-build the ecosystem over and over again, as in the case of proprietary networks. Therefore, standard network development can be focused on delivering better and faster generations to better meet the needs of future applications;
  • Advanced capabilities – due to the same reasons, we see that standards-based networks introduce better and more advanced capabilities vs. proprietary networks. For example, while congestion control has been native to InfiniBand for many years, it is just being introduced by Slingshot, to be deployed in 2020;
  • Investment protection – data center IT managers can re-use existing platforms with future platforms, protecting their financial investments for the long term.

The InfiniBand standard, developed by the InfiniBand Trade Association (IBTA), provides all of the above benefits and more. Therefore, it is the leading 200 gigabit-per-second end-to end interconnect technology for high performance computing, artificial intelligence, cloud, storage and more applications. It is highly scalable from hundreds of nodes to tens and hundreds of thousands of nodes, supports smart In-Network Computing engines to allow data algorithms to be executed by the network, provides extremely low latency, full transport offloads, remote direct memory access (RDMA), GPUDirect and other features.

Slingshot is probably based on a similar combination to that of the old Quadrics QsNet and Gnodal products. Gnodal technology was similar to the Quadrics technology approach, with added support for internal gateways to bridge the proprietary protocol to standard Ethernet, in order to offer Ethernet switch products to the market. Slingshot has a similar approach to Gnodal’s, namely to support two different network protocols: a proprietary network, and the ability to bridge over to standard Ethernet. Most, if not all, of the new features introduced by Cray, which did not exist in their previous proprietary network named Aries, are available obviously only with the proprietary Slingshot network, and not via the gate to the standard Ethernet connectivity.

Many years ago, Mellanox decided to bring together the two standard protocols, InfiniBand and Ethernet, into the same network adapter silicon devices (the ConnectX® family) and into the switch (named SwitchX®). The motivation, of course, was ease of use, as users can deploy one network, and decide later whether to use it as InfiniBand (high performance network) or Ethernet, or both at the same time. While combining InfiniBand and Ethernet on the network adapter has been a great success, the combination of the two protocols on the switch has created performance limitations, mainly due to increased switch latency. InfiniBand, designed as the ultimate software-defined network (SDN) and to deliver extremely low latency, suffered from the addition of Ethernet components, leading to increased switch latency. Therefore Mellanox decided to separate the protocols and create two switch device lines – one for InfiniBand (Mellanox Quantum™ family) and one for Ethernet (Mellanox Spectrum® family). With this change, InfiniBand switch devices demonstrate extremely low latency of ~100ns.

Ensuring lowest latency for high performance applications is one of the key elements for performance and scalability. If there is need to connect to external Ethernet networks, it is better to use external InfiniBand to Ethernet gateways, while ensuring lowest latency within the data center.

Slingshot design is similar to the old Mellanox SwitchX concept – supporting both a high-performance network (in this case the proprietary Slingshot) and the option to connect to standard Ethernet. With this approach one can save the external gateway boxes to Ethernet and connect the external Ethernet network directly to the Slingshot network, but the cost is an increase in latency. The Slingshot switch has 300ns latency, nearly 3 times higher than the InfiniBand switch devices. As such, a 2-switch layer InfiniBand network at full 200 gigabit per second connecting 800 nodes will have nearly the same latency of a single Slingshot switch device connecting 64 nodes. Obviously, it is better to use external gateway boxes rather than a switch silicon that embeds the gateway functionality and reduces performance for the data center applications.

The Slingshot proprietary network is the first of its kind — the same way all the previous proprietary networks were. Its major highlights are adaptive routing and congestion control, elements that have existed in InfiniBand for many years now. Moreover, InfiniBand offers also the SHIELD technology, bringing first to the market self-healing capabilities for resilient Exascale infrastructures, and many more other advantages.

Due to the disadvantages of proprietary network approaches compared to standards-based networks, proprietary network companies may try to market their products as “semi standards,” making claims, for example, that they have designed a “high performance” version of a standard network, in which they have modified the network protocol headers or packet sizes, and added new mechanisms for the network exchange protocols. Once one changes the network protocol, it is no longer the standard protocol. It is a proprietary protocol. If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

InfiniBand is the best choice for high performance computing infrastructure. It is a standard network protocol delivering: lowest latency, end-to-end 200 gigabit-per-second throughout today, In-Network Computing engines, Self-Healing engines, congestion control, adaptive routing, RDMA and more. InfiniBand is being used to connect the top supercomputers around the world, and it is designed to scale out and to support any network topology that can be created.

InfiniBand connected data centers can be directly connected to InfiniBand based storage platforms. And if there is need to connect to external Ethernet networks, one can use the 100 gigabit and 200 gigabit Mellanox Skyway™ InfiniBand-to-Ethernet gateway systems. InfiniBand also offers long-reach connectivity of 10 and 40 kilometers, enabling to connect remote data centers, remote storage or remote research offices directly to an InfiniBand supercomputer, with low latency, native RDMA, adaptive routing and support of Mellanox Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)™ all the way. There are also third party products enabling to connect InfiniBand centers over thousands of miles.

With the IBTA roadmap guidelines, it appears that InfiniBand will demonstrate the 400 gigabit NDR speeds, while other proprietary products might finally support 200 gigabit for an end-to-end connectivity. Therefore, InfiniBand will continue to demonstrate leading performance and capabilities, protecting data center hardware and software investments, and delivering advantages one generation ahead.

Nothing against ducks. But when it comes to connecting high performance supercomputing infrastructures, ducks will not be your best choice…


References:

[1] https://www.hpcwire.com/2019/06/10/super-connecting-the-supercomputers/

[2] https://www.hpcwire.com/2019/07/15/super-connecting-the-supercomputers-innovations-through-network-topologies/

[3] https://www.hpcwire.com/2019/08/05/super-connecting-the-supercomputers-protect-your-network-investment/

[4] https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/

[5] https://www.hpcwire.com/2016/04/12/interconnect-offloading-versus-onloading/

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire