MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

By John Russell

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions were Nvidia, Intel, Alibaba, Supermicro, Google, Huawei, Dell and others. Not bad considering the inference suite (v.5) itself was just introduced in June. Perhaps predictably, GPU powerhouse Nvidia quickly claimed early victory issuing a press release coincident with the MLPerf announcement – “NVIDIA today posted the fastest results on new benchmarks measuring the performance of AI inference workloads” – though without much detail.

Actually, navigating the results takes some effort because of the diversity of systems (cloud to servers to mobile devices) and accelerators (GPUs, FPGA, DPS, TPUs, ASICs) covered. Along with the results, MLPerf issued detailed paper explaining the benchmark just as it did for its training test suite. Noteworthy, organizations perform their own testing using the MLPerf suite and results are validated as part of that process. Among accelerators used by systems tested were Nvidia T4s, Arm variants, Habana’s Goya inference processor, Alibaba’s HanGuang, the Hailo8 chip, and others.

Making apples to apples comparisons requires some effort. Different form factors, system sizes, CPU and accelerator counts, frameworks used, all matter. Of the over 500 benchmark results released today, 182 are in the so-called Closed Division (defined below[i]) intended for direct comparison of systems. The results span 44 different systems. The benchmarks show a five-order-of-magnitude difference in performance and a three-order-of-magnitude range in estimated power consumption and range from embedded devices and smartphones to large-scale data center systems. The remaining 429 open results are in the Open Division and show a more diverse range of models, including low precision implementations and alternative models.

As you can see digging out meaningful results will take some work. One of the more accessible comparisons is looking at accelerator performance differences, said David Kanter, co-chair of the MLPerf inference working group, in a pre-briefing with HPCwire, “With respect to the number of accelerators [in a system], one of the things is that [they are] explicitly parallel. So, in some sense, the performance per chip should be the same whether you have 8, 20, 4, or one accelerators. In many respects, I think the way I conceptualize these results is to look at it on a performance per chip basis.”

Wearing his MLPerf neutral hat, Kanter was reluctant to say much about particular entries but did say, “I was impressed with the number of early prototypes and experimental systems. We specifically designed the open division for this purpose, so it was great to see people who were experimenting with ultra-low latency, reduced precision, and other novel techniques that will push the industry forward.”

It’s best to spend time with the spreadsheet to answer particular questions.

MLPerf first jumped into the AI benchmarking arena with a training test suite in May of 2018 and has issued two rounds of public results since, the most recent in July. Today’s release of inferencing test results, posted on MLPerf.org, was a long-planned step on MLPerf’s roadmap and on schedule.

The v.5 inference test suite, acknowledged Kanter, is modest covering three tasks and uses five well-established models (see chart below):

“We chose tasks that reflect major commercial and research scenarios for a large class of submitters and that capture a broad set of computing motifs. To focus on the realistic rules and testing infrastructure, we selected a minimum-viable-benchmark approach to accelerate the development process. Where possible, we adopted models that were part of the MLPerf Training v0.6 suite, thereby amortizing the benchmark-development effort,” reports MLPerf.

Four different test scenarios are employed and each has somewhat different metric. Here’s an excerpt, lightly edited, from the MLPerf paper describing the them with a chart below.

  • Single-stream. It represents one inference-query stream with a query sample size of one, reflecting the many client applications where responsiveness is critical. An example is offline voice transcription on Google’s Pixel 4 smartphone. To measure performance, the LoadGen injects. The performance metric is the integer number of streams that the system supports while meeting the QoS requirement.
  • Multistream. It represents applications with a stream of queries, but each query comprises multiple inferences, reflecting a variety of industrial-automation and remote-sensing applications. For example, many autonomous vehicles have six to eight cameras streaming simultaneously and analyze the set of frames for hazards. The performance metric is the integer number of streams that the system supports while meeting the QoS requirement.
  • Server. It represents online server applications where query arrival is random and latency is important. Almost every consumer-facing website is a good example of this scenario, including services such as online translation from Baidu, Google, and Microsoft. The server scenario’s performance metric is the Poisson parameter that indicates the queries per second achievable while meeting the QoS requirement. The performance metric is the integer number of streams that the system supports while meeting the QoS requirement.
  • Offline. It represents batch-processing applications where all the input data is immediately available and latency is unconstrained. An example is identifying the people and locations in a photo album. The metric for the offline scenario is throughput measured in samples per second.

MLPerf submitters are also required to choose one of three categories for their entries: Available– basically systems one could use or buy (cloud and on-premise) in which the systems must use a “publicly available software stack consisting of the software components that substantially determine ML performance but are absent from the source code.”; Preview–  systems must “contain components that will meet the criteria for the available category within 180 days or by the next submission cycle, whichever is later,”; and Research & Development– prototype or proof of concept system with one or more R&D component. “These components submitted in one cycle may not be submitted as available until the third cycle or until 181 days have passed, whichever is later.”

The idea is to let potential users know the state of systems being tested and also offer technology providers the opportunity to showcase developing ideas. The first round of results in the closed division had 29 available submissions, five preview systems, and three in the R&D category.

Talking about the inference testing challenge, Kanter noted, “The problem is that inference encompasses everything from 300 watt monster GPUs and accelerators down to 200 milliwatt smartphones and other low power chips. I was thrilled with the response [to this first benchmark]. We got a good variety of processors, DSPs, FPGAs, CPUs, and GPUs, so pretty much everything under the sun. The only things we’re missing are analog or neuromorphic chips [and currently] there’s no such thing as a neuromorphic processor that’s actually in production.”

It’s not quite right to say, “let the AI benchmarking wars begin.” There are of course many AI benchmark efforts underway each with distinct strengths. That said, MLPerf is backed by a broad membership (~50) from industry and academia seems to have steadily gained traction as the AI community seeks a mechanism for comparing performance between various systems and components.

Training, of course, is generally the more compute intensive task in AI, but inferencing is the workhorse function and not only represents a larger market in terms of devices deployed but also a tremendous variety of deployment environments with widely ranging power requirements. MLPerf estimates over 100 companies are producing or are on the verge of producing optimized inference chips while only about 20 companies target training.

Kanter expects the release cadence to speed up. “Broadly speaking, the schedule that I’m anticipating is we believe we can do benchmark results once a quarter. And it’s going to alternate between training and inference. Long term, we’d love to move to a model that’s more like Spec where it’s just, you know, every week or so. Obviously because we got in around 600 results, we needed to review them all. If we can break up that work and make it so that you aren’t tied to our schedule, that would be great. There’s things that are missing, there’s things we know we need to fix, once we start getting more mature, I think it would be an interesting exercise to think about what would happen if we just allowed you to drop in your results whenever and see if that’s something that would really scale and work for us as an organization.”

It’s still early days for MLPerf much as it is for the AI renaissance generally taking hold. Stay tuned

[i]

Submitters are also required enter in one of two ‘divisions’ (descriptions from the inference paper):

Closed division. “The closed division enables comparisons of different systems. Submitters employ the same models, data sets, and quality targets to ensure comparability across wildly different architectures. This division requires pre-processing, post-processing, and a model that is equivalent to the reference implementation. It also permits calibration for quantization (using the calibration data set we provide) and prohibits retraining.”

Open division. “The open division fosters innovation in ML systems, algorithms, optimization, and hardware/software co-design. Submitters must still perform the same ML task, but they may change the model architecture and use different quality targets. This division allows arbitrary pre- and post-processing and arbitrary models, including techniques such as retraining. In general, submissions are not directly comparable with each other or with closed submissions. Each open submission must include documentation about how it deviates from the closed division. Caveat emptor!”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire