Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

By Jan Rowell

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale.

That’s the conclusion drawn by the scientists and researchers of Europe’s NEXTGenIO project, an initiative funded by the European Commission’s Horizon 2020 program to explore this new technology’s potential impact for high-performance computing (HPC).

“When you put vast amounts of high-performance, byte-addressable NVRAM in the compute nodes, everything changes,” said Adrian Jackson, senior research fellow at EPCC, the supercomputing centre at the University of Edinburgh, and the software architect for a 34-node prototype platform the NEXTGenIO partner organizations co-developed to support their research. “The compute nodes become storage nodes as well as memory nodes, and you can scale your I/O bandwidth and use I/O differently. You need the right tools to access the data within the nodes, but you can use the data in different ways depending on your applications.”

The implications are exciting for HPC users like Tiago Quintino, who works with massive, fast-growing data sets at the European Center for Medium-Range Weather Forecasts (ECMWF). “We can do so much more,” he said. “We can have much more complex structures in memory. We can use the data where it is, without having to move it throughout the workflow. With the time we save, we can run more complex workflows, do more physics, increase model resolution. Extrapolating our data growth, which has been increasing three times every two years, an I/O system based on this technology will let me cope for the next 10-15 years. It is a game changer.

Exploring Non-Volatile, On-Node Memory

In addition to EPCC and ECMWF, NEXTGenIO partners include Fujitsu, Intel, Barcelona Supercomputing Center (BSC), the Technical University of Dresden, ARM, and ARCTUR. The platform they co-designed followed a requirements-driven process that also specified realistic constraints. It features a custom motherboard populated with 3 TB of Intel Optane DC persistent memory (DCPMM), dual 2nd Generation Intel Xeon Scalable processors, and 192 GB of DRAM. The Intel Optane DC memory is hosted as standard DIMMS that reside on the memory bus and can be controlled by the CPU’s integrated memory controllers. Nodes also connect to two Intel Omni-Path high-performance networks, making it possible for MPI traffic to travel over one network and storage communications across the other.

Software developed for the system includes a multi-node, local and distributed NVRAM file system that allows legacy applications to transparently benefit from the new memory/storage layer without application changes. The distributed file system uses application object stores to provide data locality and reduce reliance on parallel file systems such as Lustre. Other system software includes performance profiling and debugging tools, as well as extensions to the SLURM scheduler and workload manager for managing data locality and incorporating a job’s energy consumption into job placement decisions.

Fujitsu built the system and motherboard at its facility in Augsburg, Germany, and the system was installed at EPCC in late March 2019. It will be available to NEXTGenIO collaborators and select I/O researchers for the next three years, giving Europe a major resource to advance the understanding and use of a significant new memory technology.

Project members have begun sharing initial results that demonstrate the technology’s impact for varied HPC use cases.[1] Here are three examples.

ECMWF’s Integrated Forecasting System: Intense I/O in a Time-Critical Workflow

Based in the UK, ECMWF produces weather forecasts five to fifteen days out, multiple times per day, for its customers around the world. Its Integrated Forecasting System (IFS) writes its result—about 25 TB per hour—into ECMWF’s distributed Fields Database (FDB). The subsequent workflow involves several hundred postprocessing steps, many conducted in parallel and needing rapid access to the data output. If the central parallel file system is slowed by other workloads, forecasters have to throttle the forecast and slow the model.

Using the NEXTGenIO platform, ECMWF demonstrated the ability to output the data to the new class of memory and significantly increase performance. For IFS writing into ECMWF’s Fields Database, 16 NEXTGenIO nodes delivered 60 GiB/s read bandwidth and 72 GiB/s write bandwidth compared to sustained read throughput of 22.4 GiB/s and write throughput of 20 GiB/s on a system with 288 Lustre Object Store Service (OST) nodes with 10 disks per node. It produced an end-to-end improvement in the workflow of more than an order of magnitude. ECMWF expects to see further improvements upon optimizing the FDB code.

CASTEP: Massive Memory Requirements, Minimal I/O

CASTEP is shared source software that uses density functional theory to calculate material properties from first principles. It is used for a range of materials and substances, including DNA as well as new and exotic elements.

Many CASTEP simulations require large amounts of memory per MPI process, exceeding the memory capacity of typical HPC systems. This often forces users to reduce the number of MPI processes per node, underpopulating the CPUs and running the simulation over many nodes in order to fit the simulation into DRAM.

EPCC used CASTEP to run a memory-hungry DNA simulation on the NEXTGenIO platform, enabling a single DNA simulation that requires 20 nodes when using DRAM-only to run on just a single node, albeit much more slowly. On four nodes (Table 1), using five times fewer, the DCPMM implementation was just over three times slower than an all-DRAM execution on the NEXTGenIO system.

Table 1. CASTEP Benchmark Results

The practical implications are immense, providing HPC sites with an economical and power-efficient if somewhat slower alternative to deploying a full-DRAM platform for workloads where memory requirements outstrip compute needs. The freed nodes can be used for other jobs, optimizing overall throughput and adding to the cost benefits.

OpenFOAM: Heavy I/O with Numerous Small Files

OpenFOAM is an open source 3D computational fluid dynamics package that is effectively a collection of applications used in a complex workflow of tasks from mesh creation through postprocessing.

Here the challenge is not only the overall quantity of data, but also the large number of small files written for each time step. To explore the problem, EPCC simulated the air flow around a small electric aircraft. In 1,000 time steps, OpenFOAM was configured to write its results every five time steps. Running on 16 nodes with 448 processes, the interim results reached 806,400 files and 1.2 TB of data. Performance analysis showed that in a traditional implementation, I/O consumed 50 percent of the execution time, severely limiting scalability.

EPCC used the system software to effectively mount a node-local file system on the compute nodes’ Intel Optane DC memory. Interim results were written to the local node, using the DCPMM as storage and having the system software move the data on and off the nodes as needed. This reduced the overall runtime by as much as 50 percent, and the advantage increased with scale. These runtime savings provide opportunities to do more compute and explore more solution alternatives.

Insights from Early Adopters

NEXTGenIO collaborators offered the following suggestions for HPC users and technology innovators.

  • Think differently. “Don’t judge this technology the way you judge a parallel file system like Lustre,” said Quintino. “Lustre is like a truck—it moves a lot of data slowly. Given a lot of trucks, you can move a lot of data and have a lot of throughput. This is a Formula One race car, the pinnacle of an I/O system. It can be the first layer in a layered system, it can be a burst buffer, but we should think beyond that. It opens workflows we’ve never thought of before.”
  • Be curious. Think about what use cases are pertinent to your workload and data center challenges. “At ECMWF, DCPMM is part of the storage hierarchy,” said Jackson. “Other apps can use it as a file store, or as a multi-node file system that uses the memory to do normal parallel I/O. Some are using it to create a larger memory space so they can put a problem in a single node instead of 20 or 30 nodes. Exploiting DCPMM requires careful thought and design for applications, but the benefits can be large.”
  • Be willing to do some work. Quintino compares Intel Optane DC persistent memory to GPUs, which required some code modifications to fully benefit from. While DCPMM can be used without code modifications, many applications will benefit from explicit control of the memory. Intel offers tools and libraries to facilitate using the memory’s full feature set.

A Way to Do More Science                 

The NEXTGenIO platform will be available to HPC users whose research goals are compatible with those of the NEXTGenIO project. Fujitsu is offering the new class of memory for select PRIMERGY and PRIMEQUEST models, and its technical teams are applying their NEXTGenIO learnings as they consult with customers.

Intel Optane DC persistent memory and the innovation added by the NEXTGenIO partners mark a welcome change in the HPC landscape, according to Michèle Weiland, a senior research fellow at EPCC and project manager for NEXTGenIO. “DCPMM represents a change in the landscape in how memory, I/O, and storage systems will evolve over next few years,” she said. “It can potentially show that there’s a way out of the problems we’re currently seeing. For people who are struggling with current traditional HPC systems, who don’t have enough memory or fast enough storage, or who are limited by the amount of data they can write, this approach may give them a way to improve this, and do more science.”

To learn more about the NEXTGenIO project, visit http://nextgenio.eu

For information about gaining access to the platform, contact Professor Mark Parsons, [email protected], or Dr Michèle Weiland, [email protected]

About the Author 

Jan Rowell covers technology trends and innovations in HPC, artificial intelligence, and other areas.

[1] A paper describing some of these results will appear as “An Early Evaluation of Intel’s Optane DC Persistent Memory Module and its Impact on High Performance Scientific Applications” by Michèle Weiland and others, in SC ’19 Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis. Quintino and others from ECMWF describe the object-store file system in “A High-Performance Distributed Object-Store for Exascale Numerical Weather Prediction and Climate,” in PASC ’19: Proceedings of the Platform for Advanced Scientific Computing Conference, https://dl.acm.org/citation.cfm?id=3324989.3325726

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This