Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

By Tiffany Trader

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server chips all in the mix (and that’s just on the CPU side). A partnership announced today between Cray (now part of HPE) and Japanese IT giant Fujitsu is indicative of this trend and of a growing interest among leading HPC sites to field architecturally diverse systems that can serve double duty for simulation and AI processing.

The duo announced a partnership that will have Cray developing a commercial supercomputer powered by the Fujitsu A64FX Arm-based processor — that is of course the same chip going into the post-K “Fugaku” supercomputer to be deployed at RIKEN in 2021.

The new HPE-Cray system, part of the Cray CS500 lineup, will employ the Fujitsu A64FX Arm-based processor with Arm Scalable Vector Extensions (SVE) and second-generation high-bandwidth memory (HBM). Named as customers in today’s release are Los Alamos National Laboratory, Oak Ridge National Laboratory, RIKEN Center for Computational Science, Stony Brook University, and University of Bristol. Cray and Fujitsu said they will be exploring engineering collaboration, co-development, and joint go-to-market strategies to meet customer demand as supercomputing extends into the exascale era.

A64FX block diagram

“Our partnership with Fujitsu means customers now have a broader choice of processor technology to address their pressing computational needs,” said Fred Kohout, senior vice president and CMO at Cray. “We are delivering the development-to-deployment experience customers have come to expect from Cray, including exploratory development to the Cray Programming Environment (CPE) for Arm processors to optimize performance and scalability with additional support for Scalable Vector Extensions and high bandwidth memory.”

HBM2 on A64FX provides a maximum theoretical memory bandwidth greater than 1 terabyte per second (TB/s), a significant increase over DDR4, according to the companies.

“It’s a pleasure to partner with Cray on building technologies for the next era of computing,” said Takeshi Horie, corporate executive officer, vice head of service Platform Business Group at Fujitsu. “Both companies have a strong legacy of supercomputing and vector processing. The A64FX Arm processor was designed to empower a wide range of data-intensive applications and is the world’s first CPU to adopt the SVE of the Armv8-A instruction set architecture, specifically extended for supercomputers.”

FX1000

A few hours after the joint Cray-Fujitsu announcement was made, Fujitsu launched its own A64FX machines, the PRIMEHPC FX1000 and PRIMEHPC FX700 models that will employ the technology developed by RIKEN and Fujitsu for the Fugaku supercomputer.

As with the new Cray offering, the “Fujitsu Supercomputer PRIMEHPC” series will be equipped with the A64FX chip with Scalable Vector Extension (SVE), an extension of the Armv8-A architecture for supercomputers. “The CPU not only achieves a high memory bandwidth by using HBM2, a high-performance die-stacked memory, but also can handle half-precision arithmetic and multiply-add, which are important in such technologies as deep learning. In this way, the new supercomputers are expected to expand its use in the field of AI,” said Fujitsu.

For customers inside Japan, FX1000 deployments start at a minimum of 48 nodes, FX700 starts at a minimum of two nodes; for countries outside Japan, the entry point for FX1000 is 192 nodes and FX700 starts at a minimum of 128 nodes.

In a management direction briefing held in September, Fujitsu shared strategy for selling the new systems. “They are not being offered as stand-alone hardware, but alongside services, and we hope that they will be used in a variety of fields. At the same time, we introduced these products with the understanding that competing with just stand-alone hardware makes for an extremely difficult business environment,” said Takahito Tokita, President and Representative Director at Fujitsu Ltd.

Fujitsu will be presenting on its PRIMEHPC FX Series architecture at SC19 on Thursday, Nov. 21 (link).

Cray’s A64FX-powered CS500 system is scheduled to debut mid-2020; while Fujitsu says its new systems will start shipping in March 2020. It makes sense that Fujitsu would have a bit of a head start, but we’ll see. Fujitsu has not disclosed any customer wins yet (outside of Riken/Fugaku, of course, the flagship custom system), while Cray has four customers on record.

Among the first to purchase a Cray-Fujitsu system is Stony Brook University. Ookami, Japanese for wolf, is a $5 million testbed project funded by the NSF and conducted in collaboration with RIKEN CCS in Japan. “Memory-bandwidth-intensive applications will be especially accelerated by the ultra high-bandwidth memory while still being able to employ familiar and successful multi-core programming models,” said Robert Harrison, principal investigator and project director for Stony Brook University.

Oak Ridge National Laboratory, future home of Frontier (the Cray-AMD exascale system), is another early customer. Jeff Nichols, associate lab director for computing and computational sciences at Oak Ridge National Laboratory, commented that access “will enable our scientists to experiment with possible system architectures for the Exascale Era and advance the DOE mission.”

Los Alamos National Laboratory will also be testing out the new architecture. “The most demanding computing work at LANL involves sparse, irregular, multi-physics, multi-link-scale, highly resolved, long-running 3D simulations. There are few existing architectures that currently serve this workload well. We are excited to see a potential solution and are happy to be helping prove this Cray and Fujitsu technology is a viable alternative for this need. Having this type of capability will be quite complementary to other resources in the NNSA computing complex,” said Gary Grider, deputy division leader, HPC Division at Los Alamos.

In the UK, the University of Bristol, an early pioneer and proponent of Arm64 for HPC, is planning to build Isambard 2 on the Cray-Fujitsu architecture. Simon McIntosh-Smith, professor of high-performance computing at the University of Bristol and winner of the 2018 HPCwire Readers’ Choice Award for leadership, said his group expects to make these new technologies available to UK scientists later in 2020.

More Choices…

Globally, HPC efforts are increasingly reaching beyond traditional x86 suppliers to meet their computing requirements, spurred by the twin mandates of maintaining technological leadership and protecting national interests. The European Processor Initiative, which prioritizes technological self-reliance for the EU, is developing custom chips using Arm, RISC-V and FPGAs. RIKEN, of course, is working to field Fugaku in 2021, using primarily Japanese technologies. China has multiple homegrown technologies powering its largest supercomputers.

In the U.S., the next batch of leadership-class systems (going by current disclosures) will employ technologies from Cray/HPE, Intel, AMD, Nvidia and Mellanox. Sandia National Laboratories fielded the world’s first petascale Arm supercomputer, Astra, powered by Marvell/Cavium ThunderX2 processors in an HPE system. And the Tri-Lab Vanguard project was initiated to explore and develop Arm technologies for Sandia in partnership with Lawrence Livermore National Laboratory and Los Alamos National Lab.

At ISC in June, Nvidia announced it would be ramping up support for accelerated-ARM (Arm+GPUs) to a chorus of endorsements from Cray, Marvell, RIKEN and others. We expect updates from all the relevant players at SC19.

There is also growing interest in the vector architecture of another Japanese company, NEC. Los Alamos National Laboratory and the United States Naval Research Laboratory are both presenting on early work and benchmarking of the NEC SX-Aurora TSUBASA Vector Engine at NEC’s Aurora Forum, to be held at SC19 on Monday, Nov. 18 (link).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It also introduced the D-Wave Launch program intended to jump st Read more…

By John Russell

What’s New in Computing vs. COVID-19: AMD, Remdesivir, Fab Spending & More

September 29, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

Global QC Market Projected to Grow to More Than $800 million by 2024

September 28, 2020

The Quantum Economic Development Consortium (QED-C) and Hyperion Research are projecting that the global quantum computing (QC) market - worth an estimated $320 million in 2020 - will grow at an anticipated 27% CAGR betw Read more…

By Staff Reports

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Committee last week accepted a subcommittee report calling for a t Read more…

By John Russell

Supercomputer Research Aims to Supercharge COVID-19 Antiviral Remdesivir

September 25, 2020

Remdesivir is one of a handful of therapeutic antiviral drugs that have been proven to improve outcomes for COVID-19 patients, and as such, is a crucial weapon in the fight against the pandemic – especially in the abse Read more…

By Oliver Peckham

AWS Solution Channel

The Water Institute of the Gulf runs compute-heavy storm surge and wave simulations on AWS

The Water Institute of the Gulf (Water Institute) runs its storm surge and wave analysis models on Amazon Web Services (AWS)—a task that sometimes requires large bursts of compute power. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

D-Wave Delivers 5000-qubit System; Targets Quantum Advantage

September 29, 2020

D-Wave today launched its newest and largest quantum annealing computer, a 5000-qubit goliath named Advantage that features 15-way qubit interconnectivity. It a Read more…

By John Russell

DoE’s ASCAC Backs AI for Science Program that Emulates the Exascale Initiative

September 28, 2020

Roughly a year after beginning formal efforts to explore an AI for Science initiative the Department of Energy’s Advanced Scientific Computing Advisory Commit Read more…

By John Russell

NOAA Announces Major Upgrade to Ensemble Forecast Model, Extends Range to 35 Days

September 23, 2020

A bit over a year ago, the United States’ Global Forecast System (GFS) received a major upgrade: a new dynamical core – its first in 40 years – called the finite-volume cubed-sphere, or FV3. Now, the National Oceanic and Atmospheric Administration (NOAA) is bringing the FV3 dynamical core to... Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the new platforms will deliver 50 percent and 40 percent more... Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics code. These optimizations will be incorporated into release 2.15 with patches available for earlier versions. Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This