Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

By Tiffany Trader

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing components with Intel Xeon, AMD Epyc, IBM Power, and Arm server chips all in the mix (and that’s just on the CPU side). A partnership announced today between Cray (now part of HPE) and Japanese IT giant Fujitsu is indicative of this trend and of a growing interest among leading HPC sites to field architecturally diverse systems that can serve double duty for simulation and AI processing.

The duo announced a partnership that will have Cray developing a commercial supercomputer powered by the Fujitsu A64FX Arm-based processor — that is of course the same chip going into the post-K “Fugaku” supercomputer to be deployed at RIKEN in 2021.

The new HPE-Cray system, part of the Cray CS500 lineup, will employ the Fujitsu A64FX Arm-based processor with Arm Scalable Vector Extensions (SVE) and second-generation high-bandwidth memory (HBM). Named as customers in today’s release are Los Alamos National Laboratory, Oak Ridge National Laboratory, RIKEN Center for Computational Science, Stony Brook University, and University of Bristol. Cray and Fujitsu said they will be exploring engineering collaboration, co-development, and joint go-to-market strategies to meet customer demand as supercomputing extends into the exascale era.

A64FX block diagram

“Our partnership with Fujitsu means customers now have a broader choice of processor technology to address their pressing computational needs,” said Fred Kohout, senior vice president and CMO at Cray. “We are delivering the development-to-deployment experience customers have come to expect from Cray, including exploratory development to the Cray Programming Environment (CPE) for Arm processors to optimize performance and scalability with additional support for Scalable Vector Extensions and high bandwidth memory.”

HBM2 on A64FX provides a maximum theoretical memory bandwidth greater than 1 terabyte per second (TB/s), a significant increase over DDR4, according to the companies.

“It’s a pleasure to partner with Cray on building technologies for the next era of computing,” said Takeshi Horie, corporate executive officer, vice head of service Platform Business Group at Fujitsu. “Both companies have a strong legacy of supercomputing and vector processing. The A64FX Arm processor was designed to empower a wide range of data-intensive applications and is the world’s first CPU to adopt the SVE of the Armv8-A instruction set architecture, specifically extended for supercomputers.”

FX1000

A few hours after the joint Cray-Fujitsu announcement was made, Fujitsu launched its own A64FX machines, the PRIMEHPC FX1000 and PRIMEHPC FX700 models that will employ the technology developed by RIKEN and Fujitsu for the Fugaku supercomputer.

As with the new Cray offering, the “Fujitsu Supercomputer PRIMEHPC” series will be equipped with the A64FX chip with Scalable Vector Extension (SVE), an extension of the Armv8-A architecture for supercomputers. “The CPU not only achieves a high memory bandwidth by using HBM2, a high-performance die-stacked memory, but also can handle half-precision arithmetic and multiply-add, which are important in such technologies as deep learning. In this way, the new supercomputers are expected to expand its use in the field of AI,” said Fujitsu.

For customers inside Japan, FX1000 deployments start at a minimum of 48 nodes, FX700 starts at a minimum of two nodes; for countries outside Japan, the entry point for FX1000 is 192 nodes and FX700 starts at a minimum of 128 nodes.

In a management direction briefing held in September, Fujitsu shared strategy for selling the new systems. “They are not being offered as stand-alone hardware, but alongside services, and we hope that they will be used in a variety of fields. At the same time, we introduced these products with the understanding that competing with just stand-alone hardware makes for an extremely difficult business environment,” said Takahito Tokita, President and Representative Director at Fujitsu Ltd.

Fujitsu will be presenting on its PRIMEHPC FX Series architecture at SC19 on Thursday, Nov. 21 (link).

Cray’s A64FX-powered CS500 system is scheduled to debut mid-2020; while Fujitsu says its new systems will start shipping in March 2020. It makes sense that Fujitsu would have a bit of a head start, but we’ll see. Fujitsu has not disclosed any customer wins yet (outside of Riken/Fugaku, of course, the flagship custom system), while Cray has four customers on record.

Among the first to purchase a Cray-Fujitsu system is Stony Brook University. Ookami, Japanese for wolf, is a $5 million testbed project funded by the NSF and conducted in collaboration with RIKEN CCS in Japan. “Memory-bandwidth-intensive applications will be especially accelerated by the ultra high-bandwidth memory while still being able to employ familiar and successful multi-core programming models,” said Robert Harrison, principal investigator and project director for Stony Brook University.

Oak Ridge National Laboratory, future home of Frontier (the Cray-AMD exascale system), is another early customer. Jeff Nichols, associate lab director for computing and computational sciences at Oak Ridge National Laboratory, commented that access “will enable our scientists to experiment with possible system architectures for the Exascale Era and advance the DOE mission.”

Los Alamos National Laboratory will also be testing out the new architecture. “The most demanding computing work at LANL involves sparse, irregular, multi-physics, multi-link-scale, highly resolved, long-running 3D simulations. There are few existing architectures that currently serve this workload well. We are excited to see a potential solution and are happy to be helping prove this Cray and Fujitsu technology is a viable alternative for this need. Having this type of capability will be quite complementary to other resources in the NNSA computing complex,” said Gary Grider, deputy division leader, HPC Division at Los Alamos.

In the UK, the University of Bristol, an early pioneer and proponent of Arm64 for HPC, is planning to build Isambard 2 on the Cray-Fujitsu architecture. Simon McIntosh-Smith, professor of high-performance computing at the University of Bristol and winner of the 2018 HPCwire Readers’ Choice Award for leadership, said his group expects to make these new technologies available to UK scientists later in 2020.

More Choices…

Globally, HPC efforts are increasingly reaching beyond traditional x86 suppliers to meet their computing requirements, spurred by the twin mandates of maintaining technological leadership and protecting national interests. The European Processor Initiative, which prioritizes technological self-reliance for the EU, is developing custom chips using Arm, RISC-V and FPGAs. RIKEN, of course, is working to field Fugaku in 2021, using primarily Japanese technologies. China has multiple homegrown technologies powering its largest supercomputers.

In the U.S., the next batch of leadership-class systems (going by current disclosures) will employ technologies from Cray/HPE, Intel, AMD, Nvidia and Mellanox. Sandia National Laboratories fielded the world’s first petascale Arm supercomputer, Astra, powered by Marvell/Cavium ThunderX2 processors in an HPE system. And the Tri-Lab Vanguard project was initiated to explore and develop Arm technologies for Sandia in partnership with Lawrence Livermore National Laboratory and Los Alamos National Lab.

At ISC in June, Nvidia announced it would be ramping up support for accelerated-ARM (Arm+GPUs) to a chorus of endorsements from Cray, Marvell, RIKEN and others. We expect updates from all the relevant players at SC19.

There is also growing interest in the vector architecture of another Japanese company, NEC. Los Alamos National Laboratory and the United States Naval Research Laboratory are both presenting on early work and benchmarking of the NEC SX-Aurora TSUBASA Vector Engine at NEC’s Aurora Forum, to be held at SC19 on Monday, Nov. 18 (link).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire