Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

By John Russell

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Aurora’s basic node which will feature two Xeons and six Ponte Vecchios. Intel also took time to dig deeper into its oneAPI effort which is now in “beta launch” and positioned as both an industry initiative and an Intel product intended to enhance development for heterogeneous compute architectures.

The announcements came at Intel’s HPC Developer Conference running today and tomorrow in Denver, almost literally next door to SC19 at the Denver Convention Center, and in a media pre-briefing last week led by Intel’s Raj Hazra, VP & GM for enterprise and government. At the pre-briefing, Hazra fleshed out Intel’s vision for converged HPC-AI and described Intel’s developing “XPU” strategy which embraces CPUs, GPUs, FPGAs, NNP (neural net processors), and other accelerators as necessary elements for advancing computing on all fronts from high-end HPC to small power hungry edge devices.

“No longer [does] one size fit all,” said Hazra. “We have to look at architectures tuned to the needs of varying kinds of workloads in this convergence era.” Citing a 60 percent CAGR for MIPS, Hazra said Intel now needed “a portfolio of architectures” to address compute needs, which he labelled as Intel’s XPU approach.

Relatively few technical details about the Xe were discussed. It will use Intel’s new 7nm process technology, Foveros multi-die packaging, and be ready to use Intel-backed CXL interconnect technology. Ari Rauch, Intel GM visual technology team and graphics business, was coy when asked if Ponte Vecchio would use Intel’s nascent EMIB (embedded multi connect bridge) technology. “We’re not disclosing [that] but you can assume the device is taking into advantage all the latest and greatest technology from Intel …3D packaging, memory technology, they’re all in play.” Later at the DevCon, Intel confirmed the use of EMIB.

He did say Intel was focused on having a common over-arching architecture and common programming model across the Xe line, but in the context of also delivering ‘microarchitectures’ targeting specific workloads. One can imagine a variety of memory, IO, and mixed precision, and power consumption attributes delivered in members of the Xeline. The first Ponte Vecchio devices to market will presumably be in Aurora which is due in 2021. Intel confirmed it planned to sell Xe GPUs as standalone products although with few details and no firm timeline. In fact, the first-to-market Xe device will appear in 2020 and be in a consumer setting according to Intel.

Intel was likewise scant with new details about Aurora which will be located at Argonne National Laboratory. Hazra reiterated Aurora would have more than 200 racks, 230 petabytes of storage, and more than 10 petabytes of memory. The two CPUs on each node will be Sapphire Rapids generation Xeons connected to six Ponte Vecchios and be programmed with Intel’s oneAPI stack.

When asked, Raj declined to say what the rack type would be or to specify the ratio of DDR5 to Optane memory planned. “We will be taking the covers off gradually over the next few months, and we will get to those levels of specific configuration details at that point,” he said. (Interestingly, from a macro level an Aurora node looks a lot like a Summit node – of course the devil is in the details.)

Bill Savage, GM for compute performance and developer products, provided a fair amount of detail around oneAPI which is now available on Intel’s DevCloud. Intel describes oneAPI as a unified programming model to simplify development across diverse architectures.

Savage noted developers generally rely on abstractions to get access to hardware through middleware and frameworks, and in the case of HPC, by coding more closely and directly to the hardware. Targeting new architectures typically requires low level programming and sometimes different programming languages and libraries. The same can said for middleware and frameworks often optimized for specific hardware. Savage pointed to TensorFlow which when first released was “optimized for one vendor’s GPU” and not for anything else.”

The oneAPI vision is expansive. It would offer a “low level common interface to heterogeneous hardware so that HPC developers can code directly to the hardware, through languages and libraries that are shared across architectures and across vendors as well as making sure that middleware and frameworks are powered by one API and fully optimized for the developers that live on top of abstractions.” That seems a worthy idea but a tall order.

Here is Savage on oneAPI and on the decision to create Data Parallel C++ (DPC++) as the base language:

“It is both an industry initiative and an Intel product. [The] industry initiative is driving an open standard with an open source reference implementation with partners in the industry. [By doing this] we can share and reuse source code across architectures and vendors.

“We looked closely at OpenCL, Java and other languages, and how they had compromises in performance or delivered reuse of software. [We] selected a language that could deliver both the productivity and performance. It’s C++ based but has we’ve applied a number extensions to make it more usable, and developer friendly as well as deliver better performance. Then we added a set of APIs for low level libraries to offer a common set of capabilities across the domains of HPC and AI, as well as other domains at the low level. So those are parts of the standard.”

The Intel oneAPI product has a few additional features including a compatibility tool and some analysis and debug tools.

“We have an implementation of the data parallel C++ compiler as well as the set of libraries that match the APIs in the specification. So that’s the core of the Intel one API product. In addition, we took our analysis tools like the VTune Inspector/Advisor, and we’ve enabled those for one API as well debugging and supporting tools,” said Savage.

Intel also developed compatibility tool to aid in source code migration such as Cuda to DPC++. “We get the source in our data parallel C++ that can cross architecture and vendor boundaries and you should get good performance in the first port,” said Savage. He expects tuning for specific microarchitectures will be required to achieve optimum performance.

A big question is who is supporting the effort. At the media pre-briefing Intel promised more information on partners and organization of the initiative would be forthcoming during its developer conference now underway.

Lastly, lest you think the venerable Xeon is being lost in the shuffle of Intel’s emerging XPUs approach, Hazra called it the workhorse of Intel’s converged HPC/AI strategy. As shown below nothing really new about Intel’s CPU roadmap was presented but Hazra emphasized previously discussed plans particularly the addition of mixed-precision capabilities in forthcoming generations.

“We’re shipping our Cascade Lake 14 nanometer processor today with Intel DL Boost, which is also called VNNI (vector neural net instructions), and [it’s] enabled with Optane Datacenter Persistent Memory first generation. That beat continues in 2020 as we introduce Cooper Lake with the next generation of DL Boost and specifically bringing bfloat16, the industry’s converged reduced precision, numeric format for AI into the processor for the first time.”

The 10nm Ice Lake ramp-up continues in the second half of 2020 and will provide more microarchitecture and architectural features for both traditional HPC and AI, said Hazra. Sapphire Rapids, of course, is due in 2021 in time for Aurora. Hazra said little about it beyond it would have impressive scale-out and scale-up performance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago and a computer scientist at Argonne National Laboratory, as s Read more…

PEARC21 Plenary Session: AI for Innovative Social Work

July 21, 2021

AI analysis of social media poses a double-edged sword for social work and addressing the needs of at-risk youths, said Desmond Upton Patton, senior associate dean, Innovation and Academic Affairs, Columbia University. S Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participants in the Scientific Research Enabled by CS-1 Systems panel Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

ExaWind Prepares for New Architectures, Bigger Simulations

July 10, 2021

The ExaWind project describes itself in terms of terms like wake formation, turbine-turbine interaction and blade-boundary-layer dynamics, but the pitch to the Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire