Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

By John Russell

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first planned U.S. exascale computer. Intel also provided a glimpse of Aurora’s basic node which will feature two Xeons and six Ponte Vecchios. Intel also took time to dig deeper into its oneAPI effort which is now in “beta launch” and positioned as both an industry initiative and an Intel product intended to enhance development for heterogeneous compute architectures.

The announcements came at Intel’s HPC Developer Conference running today and tomorrow in Denver, almost literally next door to SC19 at the Denver Convention Center, and in a media pre-briefing last week led by Intel’s Raj Hazra, VP & GM for enterprise and government. At the pre-briefing, Hazra fleshed out Intel’s vision for converged HPC-AI and described Intel’s developing “XPU” strategy which embraces CPUs, GPUs, FPGAs, NNP (neural net processors), and other accelerators as necessary elements for advancing computing on all fronts from high-end HPC to small power hungry edge devices.

“No longer [does] one size fit all,” said Hazra. “We have to look at architectures tuned to the needs of varying kinds of workloads in this convergence era.” Citing a 60 percent CAGR for MIPS, Hazra said Intel now needed “a portfolio of architectures” to address compute needs, which he labelled as Intel’s XPU approach.

Relatively few technical details about the Xe were discussed. It will use Intel’s new 7nm process technology, Foveros multi-die packaging, and be ready to use Intel-backed CXL interconnect technology. Ari Rauch, Intel GM visual technology team and graphics business, was coy when asked if Ponte Vecchio would use Intel’s nascent EMIB (embedded multi connect bridge) technology. “We’re not disclosing [that] but you can assume the device is taking into advantage all the latest and greatest technology from Intel …3D packaging, memory technology, they’re all in play.” Later at the DevCon, Intel confirmed the use of EMIB.

He did say Intel was focused on having a common over-arching architecture and common programming model across the Xe line, but in the context of also delivering ‘microarchitectures’ targeting specific workloads. One can imagine a variety of memory, IO, and mixed precision, and power consumption attributes delivered in members of the Xeline. The first Ponte Vecchio devices to market will presumably be in Aurora which is due in 2021. Intel confirmed it planned to sell Xe GPUs as standalone products although with few details and no firm timeline. In fact, the first-to-market Xe device will appear in 2020 and be in a consumer setting according to Intel.

Intel was likewise scant with new details about Aurora which will be located at Argonne National Laboratory. Hazra reiterated Aurora would have more than 200 racks, 230 petabytes of storage, and more than 10 petabytes of memory. The two CPUs on each node will be Sapphire Rapids generation Xeons connected to six Ponte Vecchios and be programmed with Intel’s oneAPI stack.

When asked, Raj declined to say what the rack type would be or to specify the ratio of DDR5 to Optane memory planned. “We will be taking the covers off gradually over the next few months, and we will get to those levels of specific configuration details at that point,” he said. (Interestingly, from a macro level an Aurora node looks a lot like a Summit node – of course the devil is in the details.)

Bill Savage, GM for compute performance and developer products, provided a fair amount of detail around oneAPI which is now available on Intel’s DevCloud. Intel describes oneAPI as a unified programming model to simplify development across diverse architectures.

Savage noted developers generally rely on abstractions to get access to hardware through middleware and frameworks, and in the case of HPC, by coding more closely and directly to the hardware. Targeting new architectures typically requires low level programming and sometimes different programming languages and libraries. The same can said for middleware and frameworks often optimized for specific hardware. Savage pointed to TensorFlow which when first released was “optimized for one vendor’s GPU” and not for anything else.”

The oneAPI vision is expansive. It would offer a “low level common interface to heterogeneous hardware so that HPC developers can code directly to the hardware, through languages and libraries that are shared across architectures and across vendors as well as making sure that middleware and frameworks are powered by one API and fully optimized for the developers that live on top of abstractions.” That seems a worthy idea but a tall order.

Here is Savage on oneAPI and on the decision to create Data Parallel C++ (DPC++) as the base language:

“It is both an industry initiative and an Intel product. [The] industry initiative is driving an open standard with an open source reference implementation with partners in the industry. [By doing this] we can share and reuse source code across architectures and vendors.

“We looked closely at OpenCL, Java and other languages, and how they had compromises in performance or delivered reuse of software. [We] selected a language that could deliver both the productivity and performance. It’s C++ based but has we’ve applied a number extensions to make it more usable, and developer friendly as well as deliver better performance. Then we added a set of APIs for low level libraries to offer a common set of capabilities across the domains of HPC and AI, as well as other domains at the low level. So those are parts of the standard.”

The Intel oneAPI product has a few additional features including a compatibility tool and some analysis and debug tools.

“We have an implementation of the data parallel C++ compiler as well as the set of libraries that match the APIs in the specification. So that’s the core of the Intel one API product. In addition, we took our analysis tools like the VTune Inspector/Advisor, and we’ve enabled those for one API as well debugging and supporting tools,” said Savage.

Intel also developed compatibility tool to aid in source code migration such as Cuda to DPC++. “We get the source in our data parallel C++ that can cross architecture and vendor boundaries and you should get good performance in the first port,” said Savage. He expects tuning for specific microarchitectures will be required to achieve optimum performance.

A big question is who is supporting the effort. At the media pre-briefing Intel promised more information on partners and organization of the initiative would be forthcoming during its developer conference now underway.

Lastly, lest you think the venerable Xeon is being lost in the shuffle of Intel’s emerging XPUs approach, Hazra called it the workhorse of Intel’s converged HPC/AI strategy. As shown below nothing really new about Intel’s CPU roadmap was presented but Hazra emphasized previously discussed plans particularly the addition of mixed-precision capabilities in forthcoming generations.

“We’re shipping our Cascade Lake 14 nanometer processor today with Intel DL Boost, which is also called VNNI (vector neural net instructions), and [it’s] enabled with Optane Datacenter Persistent Memory first generation. That beat continues in 2020 as we introduce Cooper Lake with the next generation of DL Boost and specifically bringing bfloat16, the industry’s converged reduced precision, numeric format for AI into the processor for the first time.”

The 10nm Ice Lake ramp-up continues in the second half of 2020 and will provide more microarchitecture and architectural features for both traditional HPC and AI, said Hazra. Sapphire Rapids, of course, is due in 2021 in time for Aurora. Hazra said little about it beyond it would have impressive scale-out and scale-up performance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks.  These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of i Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

Texas A&M HPRC at PEARC24: Building the National CI Workforce

October 1, 2024

Texas A&M High-Performance Research Computing (HPRC) significantly contributed to the PEARC24 (Practice & Experience in Advanced Research Computing 2024) conference. Eleven HPRC and ACES’ (Accelerating Computin Read more…

A Q&A with Quantum Systems Accelerator Director Bert de Jong

September 30, 2024

Quantum technologies may still be in development, but these systems are evolving rapidly and existing prototypes are already making a big impact on science and industry. One of the major hubs of quantum R&D is the Q Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks.  These benchmarks have focused on mathematical ML operations and accelerators (e.g., N Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced  export controls on quantum computing technologies as well as new controls for advanced semiconductors and additiv Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire