51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

By Oliver Peckham

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of IceCube, an Antarctic observatory dedicated to detecting and analyzing neutrinos – quiet, mysterious particles spawned by nuclear reactions that almost never interact with matter. The weekend before the biggest HPC conference of the year, SC19 in Denver, researchers at IceCube Science leveraged around 51,000 cloud-based GPUs to help understand the data collected by IceCube’s massive sensor array.

“For the first time in human history, we have instruments on the ground that can measure neutrinos, can measure gravitational waves, and can measure different frequencies of light in order to look at celestial phenomena,” explained Frank Wuerthwein, lead for high-throughput computing at the San Diego Supercomputer Center (SDSC), a professor of physics at the University of California San Diego and executive director of the Open Science Grid, in an interview with HPCwire. “The big picture is to study the most violent events in the universe … The idea is that if you have multiple types of detection mechanisms, you can unravel what exactly is going on to make these violent events.”

The ice-based sensors detect the signatures of neutrinos passing by them, collecting data from the shockwaves that neutrinos send rippling throughout the ancient ice sheets. So where does computing enter the process? “They need to understand the ice properties,” Wuerthwein said, “and that’s done with simulation.”

Building an experiment

This became the basis for Wuerthwein’s grand experiment: using IceCube’s science goals as a basis for attaining the largest scale ever achieved in cloud-based simulations on GPUs. The experiment had three objectives: producing data that would actually be used for scientific purposes; learning the extent to which organizations could burst at very large scales; and learning the global capacity of GPUs in the cloud. The burst, he said, would achieve about a month’s worth of simulation work for IceCube Science in a single hour.

Originally, they set out to use Amazon Web Services (AWS) for the experiment. As it turned out, they reached the upper bounds of AWS’ availability – and, it turned out, the upper bounds of the planet’s availability. “It went from doing an exaflop-hour in AWS,” Wuerthwein said, “into buying the entire capacity of GPUs across AWS, Microsoft Azure and Google Cloud, because only when we buy the entire global capacity do we reach the scale that we’re shooting for.” In fact, even with all three cloud providers in play, the capacity fell short of the target of 80,000 Nvidia V100 GPUs (“Call me greedy, or ambitious,” Wuerthwein said).

Taking over the world’s GPUs

Wuerthwein laid out the plan like it was a heist. “So, we’re going to try to get all the available GPUs on the planet – and we’re going to be evicted any time anybody else wants any GPU anywhere, basically,” he said. Eight generations of Nvidia GPUs were in play, including the V100, the P100, the P40, the P4, the T4, the M60, the K80 and the K520. Each was handling an IceCube data load tailored to its capabilities, and the workloads were designed to take just 15 to 30 minutes in order to reduce the risk of being booted off GPUs due to sudden demand.

Coordinating the constituent cloud providers, Wuerthwein said, took some doing – as did getting information about what to expect on the day in question. “It took some convincing in some cases to give us some information about what to expect,” he said. The scope was huge: 28 cloud regions across three continents (North America, Europe and Asia). 

Such a massive experiment, of course, required teamwork. Wuerthwein highlighted the efforts of Igor Sfiligoi (lead scientific software developer at SDSC) and David Schultz (filtering programmer at the Wisconsin IceCube Particle Astrophysics Center [WIPAC]), who were crucial to making the experiment a technical reality, as well as Benedikt Riedel (computing manager at WIPAC), who helped Wuerthwein to coordinate the agencies involved.

The experiment was funded by a National Science Foundation (NSF) grant for almost $300,000. For the first day of burst simulations, which were conducted on Saturday (the lightest day for expected load, Wuerthwein explained), the team expected to spend around $120,000 to $150,000, with the remainder going to a second day planned for a quiet demand period around Thanksgiving or Christmas.

Prior to the experiment, the team ran scalability tests on a few thousand GPUs for an hour or so at a time on individual providers. And then, finally, on November 16th, they did it. While at SC19, Frank revealed the results: a peak of 51,000 GPUs operating in tandem in a single HTCondor pool, all running IceCube’s simulations. “At peak,” Wuerthwein wrote, “our cloud-based cluster provided almost 90% of the performance of Summit, at least for the purpose of IceCube simulations.” Due to budget constraints, the team ramped down the experiment after the two-hour mark – a total success, apart from a couple of hiccups when terminating the jobs.

Cloud GPU instances over time during the experiment. Image courtesy of Igor Sfiligoi, lead scientific software developer and research at SDSC.

Heroic calculations

Wuerthwein hopes that this experiment will pave the way for many other applications. “We have a very, very wide range of different scientific problems,” he said, “all of which could be referred to the same infrastructure we’re using for IceCube. Once we have understood how to do this with IceCube, we can offer it to anybody else as a service.” He was also pleased with the reception at SC19: “Everybody considers what we achieved a huge success,” he said, “despite the fact that we fell way short of what we were shooting for.”

Still, Wuerthwein doesn’t expect such massive bursts to become regular occurrences in the near future. After all, he explained, the cost would skyrocket if users wanted to burst at that scale on a regular basis, rather than just a few times a year. “Right now, it’s once-in-my-lifetime,” he said. “I don’t expect that I will have customers knocking on my door by the dozens who want to do this.”

“I think that this falls into the category of – you do something because you’re pushing boundaries. It’s a heroic calculation.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire