51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

By Oliver Peckham

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of IceCube, an Antarctic observatory dedicated to detecting and analyzing neutrinos – quiet, mysterious particles spawned by nuclear reactions that almost never interact with matter. The weekend before the biggest HPC conference of the year, SC19 in Denver, researchers at IceCube Science leveraged around 51,000 cloud-based GPUs to help understand the data collected by IceCube’s massive sensor array.

“For the first time in human history, we have instruments on the ground that can measure neutrinos, can measure gravitational waves, and can measure different frequencies of light in order to look at celestial phenomena,” explained Frank Wuerthwein, lead for high-throughput computing at the San Diego Supercomputer Center (SDSC), a professor of physics at the University of California San Diego and executive director of the Open Science Grid, in an interview with HPCwire. “The big picture is to study the most violent events in the universe … The idea is that if you have multiple types of detection mechanisms, you can unravel what exactly is going on to make these violent events.”

The ice-based sensors detect the signatures of neutrinos passing by them, collecting data from the shockwaves that neutrinos send rippling throughout the ancient ice sheets. So where does computing enter the process? “They need to understand the ice properties,” Wuerthwein said, “and that’s done with simulation.”

Building an experiment

This became the basis for Wuerthwein’s grand experiment: using IceCube’s science goals as a basis for attaining the largest scale ever achieved in cloud-based simulations on GPUs. The experiment had three objectives: producing data that would actually be used for scientific purposes; learning the extent to which organizations could burst at very large scales; and learning the global capacity of GPUs in the cloud. The burst, he said, would achieve about a month’s worth of simulation work for IceCube Science in a single hour.

Originally, they set out to use Amazon Web Services (AWS) for the experiment. As it turned out, they reached the upper bounds of AWS’ availability – and, it turned out, the upper bounds of the planet’s availability. “It went from doing an exaflop-hour in AWS,” Wuerthwein said, “into buying the entire capacity of GPUs across AWS, Microsoft Azure and Google Cloud, because only when we buy the entire global capacity do we reach the scale that we’re shooting for.” In fact, even with all three cloud providers in play, the capacity fell short of the target of 80,000 Nvidia V100 GPUs (“Call me greedy, or ambitious,” Wuerthwein said).

Taking over the world’s GPUs

Wuerthwein laid out the plan like it was a heist. “So, we’re going to try to get all the available GPUs on the planet – and we’re going to be evicted any time anybody else wants any GPU anywhere, basically,” he said. Eight generations of Nvidia GPUs were in play, including the V100, the P100, the P40, the P4, the T4, the M60, the K80 and the K520. Each was handling an IceCube data load tailored to its capabilities, and the workloads were designed to take just 15 to 30 minutes in order to reduce the risk of being booted off GPUs due to sudden demand.

Coordinating the constituent cloud providers, Wuerthwein said, took some doing – as did getting information about what to expect on the day in question. “It took some convincing in some cases to give us some information about what to expect,” he said. The scope was huge: 28 cloud regions across three continents (North America, Europe and Asia). 

Such a massive experiment, of course, required teamwork. Wuerthwein highlighted the efforts of Igor Sfiligoi (lead scientific software developer at SDSC) and David Schultz (filtering programmer at the Wisconsin IceCube Particle Astrophysics Center [WIPAC]), who were crucial to making the experiment a technical reality, as well as Benedikt Riedel (computing manager at WIPAC), who helped Wuerthwein to coordinate the agencies involved.

The experiment was funded by a National Science Foundation (NSF) grant for almost $300,000. For the first day of burst simulations, which were conducted on Saturday (the lightest day for expected load, Wuerthwein explained), the team expected to spend around $120,000 to $150,000, with the remainder going to a second day planned for a quiet demand period around Thanksgiving or Christmas.

Prior to the experiment, the team ran scalability tests on a few thousand GPUs for an hour or so at a time on individual providers. And then, finally, on November 16th, they did it. While at SC19, Frank revealed the results: a peak of 51,000 GPUs operating in tandem in a single HTCondor pool, all running IceCube’s simulations. “At peak,” Wuerthwein wrote, “our cloud-based cluster provided almost 90% of the performance of Summit, at least for the purpose of IceCube simulations.” Due to budget constraints, the team ramped down the experiment after the two-hour mark – a total success, apart from a couple of hiccups when terminating the jobs.

Cloud GPU instances over time during the experiment. Image courtesy of Igor Sfiligoi, lead scientific software developer and research at SDSC.

Heroic calculations

Wuerthwein hopes that this experiment will pave the way for many other applications. “We have a very, very wide range of different scientific problems,” he said, “all of which could be referred to the same infrastructure we’re using for IceCube. Once we have understood how to do this with IceCube, we can offer it to anybody else as a service.” He was also pleased with the reception at SC19: “Everybody considers what we achieved a huge success,” he said, “despite the fact that we fell way short of what we were shooting for.”

Still, Wuerthwein doesn’t expect such massive bursts to become regular occurrences in the near future. After all, he explained, the cost would skyrocket if users wanted to burst at that scale on a regular basis, rather than just a few times a year. “Right now, it’s once-in-my-lifetime,” he said. “I don’t expect that I will have customers knocking on my door by the dozens who want to do this.”

“I think that this falls into the category of – you do something because you’re pushing boundaries. It’s a heroic calculation.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers


Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow