Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

By John Russell

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting the trials and triumphs of the Mars Exploration rovers, Spirit and Opportunity, was just such a reminder.

Leaving aside for a moment the mammoth effort required to get the twin rovers safely to Mars (~225 million km away), the formal mission was to spend 90 days operating in the harsh Martian environment – peering, digging, grinding, analyzing, (surviving) – and send back data from which scientists could better understand all-things-Mars including finding compelling evidence of flowing water on the Earth’s neighbor at some time in the past.

Steven Squyres, Mars Rover PI

The stakes were high for the Mars Exploration mission (two launches: Spirit (6/10/2003) and Opportunity (7/7/2003) given the embarrassing failure of NASA’s Mars Climate Orbiter resulting from English-to-metric conversion (or lack of) snafu in 1999. Squyres, now a professor at Cornell, was the PI for the new mission and led SC attendees on an engaging journey through the rovers’ long journey from development through conclusion which didn’t happen until June of this 2018 when a giant Martian dust blanketed Opportunity and it ceased transmitting.

There wasn’t a surplus of HPC discussed during the SC keynote, but what an engineering tour de force. Supersonic parachutes (that shredded first during testing). A kind of bubble-wrap for landing. An intricate folded design that protected fragile rover elements beneath layers of protection. Lots of cameras. A handful of sophisticated instruments.

“Once you get down on the surface, the vehicle, there it is. It doesn’t look anything like a like a rover yet. The petals open up and inside still folded up is the rover. Now there are a lot of parts about this whole cockamamie scheme that made me nervous. But this part here with all the gears and motors and the hinges and latches that have to work was terrifying,” said Squyres.

Knitting it altogether, of course, is a computational infrastructure.

“At the heart of each vehicle, lay the mighty RAD 6000 processor (IBM) It was a smoking hot machine in 1987, runs at a screaming 10MIPs. they were the most powerful computers on the planet. Just a different planet,” said Squyres wryly. Here’s a quick description[i]: “The RAD6000 radiation-hardened single board computer, based on the IBM RISC Single Chip CPU, was manufactured by IBM Federal Systems. IBM Federal Systems was sold to Loral, and by way of acquisition, ended up with Lockheed Martin and is currently a part of BAE Systems Electronic Systems. RAD6000 is mainly known as the onboard computer of numerous NASA spacecraft.”

Before chuckling too loudly consider the extraordinary achievements of the twin rovers below.

Squyres was asked why choose the RAD6000 when Moore’s law was speeding along nicely and much higher performance CPUs could be expected by launch-time.

“That’s a really good question. So when you start off all of these projects, NASA says “Here’s the money, Ready Set, Go to the launch pad.” Typically in a well-planned project, one that arises in an orderly fashion, you have about five years between when you get your start and when you have to launch. In our case [we] had 34 months. We had a brutally tight schedule. You have to freeze effectively your design, maybe a year to year and a half [in] because what takes the time is the testing. You have to validate by testing every single part. And our project we’re at 34 months, we froze the technology at the start. Everything every technology that we used was proven technology,” said Squyres.

The keynote is best experienced first-hand and hopefully SC organizers will post a link to a video of the keynote. Space travel and exploration is inherently risky. There’s the ice cold of space itself and danger of radiation. Once at Mars, whose gravity is roughly 1/3 of Earth, the topography is rocky, with canyons, volcanoes, dry lake beds and craters. Temperatures average ~ minus 60 C, but seesaw depending on location and time of day – “A summer day on Mars may get up to 70 degrees F (20 degrees C) near the equator, but at night the temperature can plummet to about minus 100 degrees F (minus 73 C).”[ii] Calling home, of course, is time-lagging chore ~10 mins one way and 20 mins roundtrip.

Both rovers encountered numerous issues ranging from getting stuck in sand to enduring stand storms. Sticking to HPC related challenges, software presented the most troublesome one (maybe some things don’t change no matter what planet you’re on). Squyres reported the team rebuilt the base software several times. The first reboot, five months after launch, was perhaps the most nerve-wracking, he said.

But perhaps the most threatening occurred early on Spirit.

“At 18 days into Spirit’s mission, we completely lost contact. It just went silent. Now the way that you troubleshoot the problem of spacecraft out in space is you analyze the telemetry. That’s all we had so it was frightening. With time, as days went by, we began to get little fragments of data from the spacecraft, tiny fragments. We realized was the spacecraft was booting up and crashing, booting up and crashing repeatedly every 15 minutes. All through the nighttime. So we’re burning the battery.” This was the kind of behavior that had it gone on for another “three morning sols” [we would lose it],” said Squyres.

Glenn Reeves, the team software architect, noticed it was all real-time data – “The spacecraft was saying this is what’s happening to me now, this is what’s happening to me now, over and over. No stored data at all. We have 256 megabytes of flash memory on board. None of this [data] was coming out of flash. Glenn’s insight was to realize maybe there was a problem with flash memory file systems.”

It turned out there was an incompatibility between the flight software and the commercial flash memory management software package that didn’t manifest itself until you 18 days into the mission.

“So we had a command called ‘shut-down-dammit’ to force a shut down. We had another command – and both of these were designed only for testing and never used for flight. The other one was called an encrypt-initialize-and-cripple. What that did is lend insight if there’s something wrong with flash; it sends down a shut down command followed by an encrypt-initialize-cripple and brings the thing up in cripple mode. What that does is instead of using flash, it builds a temporary file system in RAM,” said Squyres.

Voila.  Spirit came back online. The team worked the problem and built a workaround.

“There was nice little script that somebody wrote up on the white board afterward,” recalled Squyres. It read “The Spirit was willing but the flash was weak.”

Rover solar panels shown covered without dust (r) and covered with dust. Source: NASA
Rover solar panels shown free of dust (r) and covered (l) Source: NASA

There were many tense moments for both of the hardy rovers. Squyres blended entertainment and information in telling the Mars Exploration Rovers story. But it’s good to remember the goal, in addition to satisfying what seems to be our natural spirit for exploration was also to learn more about our captivating neighbor. Bulleted here are five findings excerpted from NASA’s description online:

  • Soaked in Salty Waters Long Ago: Landing in a crater, Opportunity scored a “hole in one” by finding the mineral hematite, which typically forms in water. Water is key to life as we know it. Yet, acidic water soaked this area in Mars’ ancient past, making conditions harder for life to thrive.
  • Bathing in Neutral Water in a Warmer Climate: At a place called Comanche, Spirit found rocks ten times richer in key chemicals (magnesium and iron carbonates) than any other Martian rocks studied before. These rocks formed when Mars was warm and wet (had a thicker carbon-dioxide atmosphere and near-neutral-pH water). This warmer, watery environment could have supported life much better than the harshly acidic conditions the rover found elsewhere.
  • Steamy Times in Ancient Hot Springs: While dragging a wheel, Spirit churned up soil and found 90 percent pure silica at “Home Plate.” On Earth, this kind of silica usually exists in hot springs or hot steam vents, where life as we know it often finds a hot, happy home. Perhaps ancient microbes on Mars did as well.
  • Explosive Signs of a Once Heated Habitat: Spirit discovered that an ancient volcano erupted at “Home Plate,” the rover’s final resting place. Together, powerful steam eruptions from heated underground water produced some explosive volcanism. While violent, these extreme conditions can support microbial life on Earth. Once upon a time, maybe they did on Mars…
  • Craters and the Story They Tell: Opportunity is a crater explorer. The rover has visited and studied the geology well over 100 impact craters of all sizes in its 14 years on Mars. It has learned about the lives of craters: how they form and erode through time.

[i]https://en.wikipedia.org/wiki/IBM_RAD6000

[ii]https://www.space.com/16907-what-is-the-temperature-of-mars.html

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire