At SC19: Developing a Digital Twin

By Aaron Dubrow

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location.

In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time.

SC19 – Karen Willcox (Director of the Oden Institute)

“It’s essential that UAVs monitor their structural health,” said Karen Willcox, director of the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin (UT Austin) and an expert in computational aerospace engineering. “And it’s essential that they make good decisions that result in good behavior.”

An invited speaker at the 2019 International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), Willcox shared the details of a project — supported primarily by the U.S. Air Force program in Dynamic Data-Driven Application Systems (DDDAS) — to develop a predictive digital twin for a custom-built UAV. The project is a collaboration between UT Austin, MIT, Akselos, and Aurora Flight Sciences.

The twin represents each component of the UAV, as well as its integrated whole, using physics-based models that capture the details of its behavior from the fine-scale to the macro level. The twin also ingests on-board sensor data from the vehicle and integrates that information with the model to create real-time predictions of the health of the vehicle.

Is the UAV in danger of crashing? Should it change its planned route to minimize risks? With a predictive digital twin, these kinds of decisions can be made on the fly, to keep UAVs flying.

Bigger than Big Data

In her talk, Willcox shared the technological and algorithmic advances that allow a predictive digital twin to function effectively. She also shared her general philosophy for how “high-consequence” problems can be addressed throughout science and engineering.

“Big decisions need more than just big data,” she explained. “They need big models, too.”

This combination of physics-based models and big data is frequently called “scientific machine learning.” And while machine learning, by itself, has been successful in addressing some problems — like object identification, recommendation systems, and games like Go — more robust solutions are required for problems where getting the wrong answer may be incredibly costly, or have life-or-death consequences.

“These big problems are governed by complex multiscale, multi-physics phenomena,” Willcox said. “If we change the conditions a little, we can see drastically different behavior.”

In Willcox’s work, computational modeling is paired with machine learning to produce predictions that are reliable, and also explainable. Black box solutions are not good enough for high-consequence applications. Researchers (or doctors or engineers) need to know why a machine learning system settled on a certain result.

In the case of the digital twin UAV, Willcox’s system is able to capture and communicate the evolving changes in the health of the UAV. It can also explain what sensor readings are indicating declining health and driving the predictions.

Real-Time Decision-Making at the Edge

The same pressures that require the use of physics-based models — the use of complex, high-dimensional models; the need for uncertainty quantification; the necessity of simulating all possible scenarios — also make the problem of creating predictive digital twins a computationally challenging one.

That’s where an approach called model reduction comes into play. Using a projection-based method they developed, Willcox and her collaborators can identify approximate models that are smaller, but somehow encode the most important dynamics, such that they can be used for predictions.

“This method allows the possibility of creating low-cost, physics-based models that enable predictive digital twins,” she said.
Willcox had to develop another solution to model the complex physical interactions that occur on the UAV. Rather than simulate the entire vehicle as a whole, she works with Akselos to use their approach that breaks the model (in this case, the plane) into pieces — for example, a section of a wing — and computes the geometric parameters, material properties, and other important factors independently, while also accounting for interactions that occur when the whole plane is put together.

Each component is represented by partial differential equations and at high fidelity, finite element methods and a computational mesh are used to determine the impact of flight on each segment, generating physics-based training data that feeds into a machine learning classifier.

This training is computationally intensive, and in the future Willcox’s team will collaborate with the Texas Advanced Computing Center (TACC) at UT Austin to use supercomputing to generate even larger training sets that consider more complex flight scenarios. Once training is done, online classification can be done very rapidly.

Using these model reduction and decomposition methods, Willcox was able to achieve a 1,000-time speed up — cutting simulation times from hours or minutes to seconds — while maintaining the accuracy needed for decision-making.

“The method is highly interpretable,” she said. “I can go back and see what sensor is contributing to being classified into a state.” The process naturally lends itself to sensor selection and to determining where sensors need to be placed to capture details critical to the health and safety of the UAV.

In a demonstration Willcox showed at the conference, a UAV traversing an obstacle course was able to recognize its own declining health and chart a path that was more conservative to assure it made it back home safely. This is a test UAVs must pass for them to be deployed broadly in the future.

“The work presented by Dr. Karen Willcox is a great example of the application of the DDDAS paradigm, for improving modeling and instrumentation methods and creating real-time decision support systems with the accuracy of full-scale models,” said Frederica Darema, former Director of the Air Force Office of Scientific Research, who supported the research.

“Dr. Willcox’s work showed that the application of DDDAS creates the next generation of ‘digital twin’ environments and capabilities. Such advances have enormous impact for increased effectiveness of critical systems and services in the defense and civilian sectors.”

Digital twins aren’t the exclusive domain of UAVs; they’re increasingly being developed for manufacturing, oil refineries, and Formula 1 race cars. The technology was named one of Gartner’s Top 10 Strategic Technology Trends for 2017 and 2018.

“Digital twins are becoming a business imperative, covering the entire lifecycle of an asset or process and forming the foundation for connected products and services,” said Thomas Kaiser, SAP Senior Vice President of IoT, in a 2017 Forbes interview. “Companies that fail to respond will be left behind.”

With respect to predictive data science and the development of digital twins, Willcox says: “Learning from data through the lens of models is the only way to make intractable problems practical. It brings together the methods and the approaches from the fields of data science, machine learning, and computational science and engineering, and directs them at high-consequence applications.”

Photos by the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin (UT Austin) and Dubrow

About the Author

Aaron Dubrow is a Science And Technology Writer with the Communications, Media & Design Group at the Texas Advanced Computing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

SODALITE: Towards Automated Optimization of HPC Application Deployment

May 29, 2020

Developing and deploying applications across heterogeneous infrastructures like HPC or Cloud with diverse hardware is a complex problem. Enabling developers to describe the application deployment and optimising runtime p Read more…

By the SODALITE Team

What’s New in HPC Research: Astronomy, Weather, Security & More

May 29, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

DARPA Looks to Automate Secure Silicon Designs

May 28, 2020

The U.S. military is ramping up efforts to secure semiconductors and its electronics supply chain by embedding defenses during the chip design phase. The automation effort also addresses the high cost and complexity of s Read more…

By George Leopold

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI-based techniques – has expanded to more than 56 research Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This