At SC19: Developing a Digital Twin

By Aaron Dubrow

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location.

In such a world, there will also be a digital twin for each UAV in the fleet: a virtual model that will follow the UAV through its existence, evolving with time.

SC19 – Karen Willcox (Director of the Oden Institute)

“It’s essential that UAVs monitor their structural health,” said Karen Willcox, director of the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin (UT Austin) and an expert in computational aerospace engineering. “And it’s essential that they make good decisions that result in good behavior.”

An invited speaker at the 2019 International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), Willcox shared the details of a project — supported primarily by the U.S. Air Force program in Dynamic Data-Driven Application Systems (DDDAS) — to develop a predictive digital twin for a custom-built UAV. The project is a collaboration between UT Austin, MIT, Akselos, and Aurora Flight Sciences.

The twin represents each component of the UAV, as well as its integrated whole, using physics-based models that capture the details of its behavior from the fine-scale to the macro level. The twin also ingests on-board sensor data from the vehicle and integrates that information with the model to create real-time predictions of the health of the vehicle.

Is the UAV in danger of crashing? Should it change its planned route to minimize risks? With a predictive digital twin, these kinds of decisions can be made on the fly, to keep UAVs flying.

Bigger than Big Data

In her talk, Willcox shared the technological and algorithmic advances that allow a predictive digital twin to function effectively. She also shared her general philosophy for how “high-consequence” problems can be addressed throughout science and engineering.

“Big decisions need more than just big data,” she explained. “They need big models, too.”

This combination of physics-based models and big data is frequently called “scientific machine learning.” And while machine learning, by itself, has been successful in addressing some problems — like object identification, recommendation systems, and games like Go — more robust solutions are required for problems where getting the wrong answer may be incredibly costly, or have life-or-death consequences.

“These big problems are governed by complex multiscale, multi-physics phenomena,” Willcox said. “If we change the conditions a little, we can see drastically different behavior.”

In Willcox’s work, computational modeling is paired with machine learning to produce predictions that are reliable, and also explainable. Black box solutions are not good enough for high-consequence applications. Researchers (or doctors or engineers) need to know why a machine learning system settled on a certain result.

In the case of the digital twin UAV, Willcox’s system is able to capture and communicate the evolving changes in the health of the UAV. It can also explain what sensor readings are indicating declining health and driving the predictions.

Real-Time Decision-Making at the Edge

The same pressures that require the use of physics-based models — the use of complex, high-dimensional models; the need for uncertainty quantification; the necessity of simulating all possible scenarios — also make the problem of creating predictive digital twins a computationally challenging one.

That’s where an approach called model reduction comes into play. Using a projection-based method they developed, Willcox and her collaborators can identify approximate models that are smaller, but somehow encode the most important dynamics, such that they can be used for predictions.

“This method allows the possibility of creating low-cost, physics-based models that enable predictive digital twins,” she said.
Willcox had to develop another solution to model the complex physical interactions that occur on the UAV. Rather than simulate the entire vehicle as a whole, she works with Akselos to use their approach that breaks the model (in this case, the plane) into pieces — for example, a section of a wing — and computes the geometric parameters, material properties, and other important factors independently, while also accounting for interactions that occur when the whole plane is put together.

Each component is represented by partial differential equations and at high fidelity, finite element methods and a computational mesh are used to determine the impact of flight on each segment, generating physics-based training data that feeds into a machine learning classifier.

This training is computationally intensive, and in the future Willcox’s team will collaborate with the Texas Advanced Computing Center (TACC) at UT Austin to use supercomputing to generate even larger training sets that consider more complex flight scenarios. Once training is done, online classification can be done very rapidly.

Using these model reduction and decomposition methods, Willcox was able to achieve a 1,000-time speed up — cutting simulation times from hours or minutes to seconds — while maintaining the accuracy needed for decision-making.

“The method is highly interpretable,” she said. “I can go back and see what sensor is contributing to being classified into a state.” The process naturally lends itself to sensor selection and to determining where sensors need to be placed to capture details critical to the health and safety of the UAV.

In a demonstration Willcox showed at the conference, a UAV traversing an obstacle course was able to recognize its own declining health and chart a path that was more conservative to assure it made it back home safely. This is a test UAVs must pass for them to be deployed broadly in the future.

“The work presented by Dr. Karen Willcox is a great example of the application of the DDDAS paradigm, for improving modeling and instrumentation methods and creating real-time decision support systems with the accuracy of full-scale models,” said Frederica Darema, former Director of the Air Force Office of Scientific Research, who supported the research.

“Dr. Willcox’s work showed that the application of DDDAS creates the next generation of ‘digital twin’ environments and capabilities. Such advances have enormous impact for increased effectiveness of critical systems and services in the defense and civilian sectors.”

Digital twins aren’t the exclusive domain of UAVs; they’re increasingly being developed for manufacturing, oil refineries, and Formula 1 race cars. The technology was named one of Gartner’s Top 10 Strategic Technology Trends for 2017 and 2018.

“Digital twins are becoming a business imperative, covering the entire lifecycle of an asset or process and forming the foundation for connected products and services,” said Thomas Kaiser, SAP Senior Vice President of IoT, in a 2017 Forbes interview. “Companies that fail to respond will be left behind.”

With respect to predictive data science and the development of digital twins, Willcox says: “Learning from data through the lens of models is the only way to make intractable problems practical. It brings together the methods and the approaches from the fields of data science, machine learning, and computational science and engineering, and directs them at high-consequence applications.”

Photos by the Oden Institute for Computational Engineering and Sciences at The University of Texas at Austin (UT Austin) and Dubrow

About the Author

Aaron Dubrow is a Science And Technology Writer with the Communications, Media & Design Group at the Texas Advanced Computing Center.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

New GE Simulations on Summit to Advance Offshore Wind Power

August 6, 2020

The wind energy sector is a frequent user of high-power simulations, with researchers aiming to optimize wind flows and energy production from the massive turbines. Now, researchers at GE are preparing to undertake a lar Read more…

By Oliver Peckham

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This