IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

By John Russell

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent additions – and that an IBM quantum computer had achieved a quantum volume (QV) benchmark of 32 in keeping with plans to double QV yearly. IBM also showcased POC work with Daimler using a quantum computer to tackle materials research in battery development.

Perhaps surprisingly the news was released at the 2020 Consumer Electronics Show taking place in Las Vegas this week – “Very few ‘consumers’ will ever buy a quantum computer,” agreed IBM’s Jeff Welser in a pre-briefing with HPCwire.

That said, CES has broadened its technology compass in recent years and Delta CEO Ed Bastian delivered the opening keynote touching upon technology’s role in transforming the travel and the travel experience. Quantum computing, for example, holds promise for a wide range of relevant optimization problems such as traffic control and logistics. “We’re excited to explore how quantum computing can be applied to address challenges across the day of travel,” said Rahul Samant, Delta’s CIO, in the official IBM announcement.

Jeff Welser, IBM

IBM’s CES quantum splash was mostly about demonstrating the diverse and growing interest in quantum computing (QC) by companies. “Many of our clients are consumer companies themselves who are utilizing these systems within the Q network,” said Welser, who wears a number of hats for IBM Research, including VP of exploratory science and lab director of the Almaden Lab. “Think about the many companies who are trying to use quantum technology to come up with new materials that will make big changes in future consumer electronics,” said Welser.

Since its launch in 2016, IBM has aggressively sought to grow the IBM Q network and its available resources. IBM now has a portfolio of 15 quantum computers, ranging in size from 53-qubits down to a single-qubit ‘system’ as well as extensive quantum simulator capabilities. Last year IBM introduced Quantum Volume, a new metric for benchmarking QC progress, and suggested others should adopt it. QV is composite measure encompassing many attributes – gate fidelity, noise, coherence times, and more – not just qubit count; so far QV’s industry-wide traction has seemed limited.

Welser emphasized IBM Q Network membership has steadily grown and now spans multiple industries including airline, automotive, banking and finance, energy, insurance, materials and electronics. Newest large commercial members include Anthem, Delta, Goldman Sachs, Wells Fargo and Woodside Energy. New academia/government members include Georgia Institute of Technology and LANL. (A list and brief description of new members is at the end of the article.)

“IBM’s focus, since we put the very first quantum computer on the cloud in 2016, has been to move quantum computing beyond isolated lab experiments conducted by a handful of organizations, into the hands of tens of thousands of users,” said Dario Gil, director of IBM Research in the official announcement. “We believe a clear advantage will be awarded to early adopters in the era of quantum computing and with partners like Delta, we’re already making significant progress on that mission.”

IBM’s achievement of a QV score of 32 and the recent Daimler work are also significant. When IBM introduced QV concept broadly at the American Physical Society meeting last March, it had achieved a QV score of 16 on its fourth generation 20-qubit system. At that time IBM likened QV to the Linpack benchmark used in HPC and calling it suitable for comparing diverse quantum computing systems. Translating QV into a specific target score that will be indicative of being able to solve real-world problems is still mostly guesswork; indeed different QV-ratings may be adequate for different applications.

IBM issued a blog today discussing the latest QV showing, which was achieved on a new 28-qubit system named Raleigh. IBM also elaborated somewhat on internal practices and timetable expectations.

Writing in the blog, IBM quantum researchers Jerry Chow and Jay Gambetta note, “Since we deployed our first system with five qubits in 2016, we have progressed to a family of 16-qubit systems, 20-qubit systems, and (most recently) the first 53-qubit system. Within these families of systems, roughly demarcated by the number of qubits (internally we code-name the individual systems by city names, and the development threads as different birds), we have chosen a few to drive generations of learning cycles (Canary, Albatross, Penguin, and Hummingbird).”

It gets a bit confusing and best to consult the blog directly for a discussion of error mitigation efforts among the different IBM systems. Each system undergoes revision to improve and experiment with topology and error mitigation strategies.

Chow and Gambetta write, “We can look at the specific case for our 20-qubit systems (internally referred to as Penguin), shown in this figure:

“Shown in the plots are the distributions of CNOT errors across all of the 20-qubit systems that have been deployed, to date. We can point to four distinct revisions of changes that we have integrated into these systems, from varying underlying physical device elements, to altering the connectivity and coupling configuration of the underlying qubits. Overall, the results are striking and visually beautiful, taking what was a wide distribution of errors down to a narrow set, all centered around ~1-2% for the Boeblingen system. Looking back at the original 5-qubit systems (called Canary), we are also able to see significant learning driven into the devices.”

Looking at the evolution of quantum computing by decade IBM says:

  • 1990s: fundamental theoretical concepts showed the potential of quantum computing
  • 2000s: experiments with qubits and multi-qubit gates demonstrated quantum computing could be possible
  • And the decade we just completed, the 2010s: evolution from gates to architectures and cloud access, revealing a path to a real demand for quantum computing systems

“So where does that put us with the 2020s? The next ten years will be the decade of quantum systems, and the emergence of a real hardware ecosystem that will provide the foundation for improving coherence, gates, stability, cryogenics components, integration, and packaging,” write Chow and Gambetta. “Only with a systems development mindset will we as a community see quantum advantage in the 2020s.”

On the application development front, the IBM-Daimler work is interesting. A blog describing the work was posted today by Jeannette Garcia (global lead for quantum applications in quantum chemistry, IBM). She is also an author on the paper (Quantum Chemistry Simulations of Dominant Products in Lithium-Sulfur Batteries). She framed the challenge nicely in the blogpost:

“Today’s supercomputers can simulate fairly simple molecules, but when researchers try to develop novel, complex compounds for better batteries and life-saving drugs, traditional computers can no longer maintain the accuracy they have at smaller scales. The solution has typically been to model experimental observations from the lab and then test the theory.

“The largest chemical problems researchers have been so far able to simulate classically, meaning on a standard computer, by exact diagonalization (or FCI, full configuration interaction) comprise around 22 electrons and 22 orbitals, the size of an active space in the pentacene molecule. For reference, a single FCI iteration for pentacene takes ~1.17 hours on ~4096 processors and a full calculation would be expected to take around nine days.

“For any larger chemical problem, exact calculations become prohibitively slow and memory-consuming, so that approximation schemes need to be introduced in classical simulations, which are not guaranteed to be accurate and affordable for all chemical problems. It’s important to note that reasonably accurate approximations to classical FCI approaches also continue to evolve and is an active area of research, so we can expect that accurate approximations to classical FCI calculations will also continue to improve over time.”

IBM and Daimler researchers, building on earlier algorithm development work, were able to simulate dipole moment of three lithium-containing molecules, “which brings us one step closer the next-generation lithium sulfur (Li-S) batteries that would be more powerful, longer lasting and cheaper than today’s widely used lithium ion batteries.”

Garcia writes, “We have simulated the ground state energies and the dipole moments of the molecules that could form in lithium-sulfur batteries during operation: lithium hydride (LiH), hydrogen sulfide (H2S), lithium hydrogen sulfide (LiSH), and the desired product, lithium sulfide (Li2S). In addition, and for the first time ever on quantum hardware, we demonstrated that we can calculate the dipole moment for LiH using 4 qubits on IBM Q Valencia, a premium-access 5-qubit quantum computer.”

She notes Daimler hope that quantum computers will eventually help them design next-generation lithium-sulfur batteries, because they have the potential to compute and precisely simulate their fundamental behavior. Current QCs are too noisy and limited in size but the POC work is promising. It also represents a specific, real-world opportunity.

Link to IBM blog: https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/

Link to Daimler paper: https://arxiv.org/abs/2001.01120

Feature image: Photo of the IBM System One quantum computer being shown at CES. Source: IBM

 

List of IBM Q New Members Excerpted from the Release (unedited)

Commercial organizations:

  • Anthem: Anthem is a leading health benefits company and will be expanding its research and development efforts to explore how quantum computing may further enhance the consumer healthcare experience. Anthem brings its expertise in working with healthcare data to the Q Network. This technology also has the potential to help individuals lead healthier lives in a number of ways, such as helping in the development of more accurate and personalized treatment options and improving the prediction of health conditions.
  • Delta Air Lines: The global airline has agreed to join the IBM Q Hub at North Carolina State University. They are the first airline to embark on a multi-year collaborative effort with IBM to explore the potential capabilities of quantum computing to transform experiences for customers and employees and address challenges across the day of travel.

Academic institutions and government research labs:

  • Georgia Tech: The university has agreed to join the IBM Q Hub at the Oak Ridge National Laboratory to advance the fundamental research and use of quantum computing in building software infrastructure to make it easier to operate quantum machines, and developing specialized error mitigation techniques. Access to IBM Q commercial systems will also allow Georgia Tech researchers to better understand the error patterns in existing quantum computers, which can help with developing the architecture for future machines.
  • Los Alamos National Laboratory: Joining as an IBM Q Hub will greatly help the Los Alamos National Laboratory research efforts in several directions, including developing and testing near-term quantum algorithms and formulating strategies for mitigating errors on quantum computers. The 53-qubit system will also allow Los Alamos to benchmark the abilities to perform quantum simulations on real quantum hardware and perhaps to push beyond the limits of classical computing. Finally, the IBM Q Network will be a tremendous educational tool, giving students a rare opportunity to develop innovative research projects in the Los Alamos Quantum Computing Summer School.

Startups:

  • AIQTECH: Based in Toronto, AiQ is an artificial intelligence software enterprise set to unleash the power of AI to “learn” complex systems. In particular, it provides a platform to characterize and optimize quantum hardware, algorithms, and simulations in real time. This collaboration with the IBM Q Network provides a unique opportunity to expand AiQ’s software backends from quantum simulation to quantum control and contribute to the advancement of the field.
  • BEIT: The Kraków, Poland-based startup is hardware-agnostic, specializing in solving hard problems with quantum-inspired hardware while preparing the solutions for the proper quantum hardware, when it becomes available. Their goal is to attain super-polynomial speedups over classical counterparts with quantum algorithms via exploitation of problem structure.
  • Quantum Machines: QM is a provider of control and operating systems for quantum computers, with customers among the leading players in the field, including multinational corporations, academic institutions, start-ups and national research labs. As part of the IBM and QM collaboration, a compiler between IBM’s quantum computing programming languages, and those of QM is being developed and offered to QM’s customers. Such development will lead to the increased adoption of IBM’s open-sourced programming languages across the industry.
  • TradeTeq: TradeTeq is the first electronic trading platform for the institutional trade finance market. With teams in London, Singapore, and Vietnam, TradeTeq is using AI for private credit risk assessment and portfolio optimization. TradeTeq is collaborating with leading universities around the globe to build the next generation of machine learning and optimization models, and is advancing the use of quantum machine learning to build models for better credit, investment and portfolio decisions.
  • Zurich Instruments: Zurich Instruments is a test and measurement company based in Zurich, Switzerland, with the mission to progress science and help build the quantum computer. It is developing state-of-the-art control electronics for quantum computers, and now offers the first commercial Quantum Computing Control System linking high-level quantum algorithms with the physical qubit implementation. It brings together the instrumentation required for quantum computers from a few qubits to 100 qubits. They will work on the integration of IBM Q technology with the companies’ own electronics to ensure reliable control and measurement of a quantum device while providing a clean software interface to the next higher level in the stack.”
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This