Julia Programming’s Dramatic Rise in HPC and Elsewhere

By John Russell

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance on computationally intensive problems were C and Fortran – maybe they still are. Fast forward to 2020 and Julia is making a run at the top and Edelman won last year’s IEEE Sidney Fernbach Award presented at SC19 for, among other things, his work on Julia.

Consider recent stats on Julia adoption. By January 1, 2019, reports Julialang.org, the total downloads of Julia reached 7.3 million. That number jumped to 12.9 million, a 77 percent increase, by January 1, 2020. The number of published citations for same period rose 66 percent from 1048 to 1680. In his SC19 talk, Edelman noted that as of October 2019 there were 3,119 Julia packages available, up from 1,688 at the year’s start. Those numbers are impressive all around.

In September, Julia joined the ranks of computing languages that have achieved peak performance exceeding one petaflop per second – the so-called ‘Petaflop Club.’ The Julia application that achieved this milestone is called Celeste. The Celeste team developed a new parallel computing method to process the entire Sloan Digital Sky Survey dataset and loaded an aggregate of 178 terabytes of image data to produce the most accurate catalog of 188 million astronomical objects in just 14.6 minutes. Celeste achieved peak performance of 1.54 petaflops using 1.3 million threads on 9,300 Knights Landing (KNL) nodes of the Cori supercomputer at NERSC – a performance improvement of 1,000x in single-threaded execution.

Alan Edelman, MIT

You get the idea. Julia is on a roll. Whether Julia will challenge Python the way Python once challenged and then surpassed Java is an interesting question being bandied about. What’s clear is that after percolating along steadily during its early years, Julia use is growing quickly – much to Edelman’s delight.

The tension between the high performance delivered by so-called static programming languages and the lesser performance delivered by high-level programming languages, which emphasize abstraction, speed of development, and portability, hasn’t gone away, noted Edelman. But convenience with sufficient performance is winning out. Moreover, the rise of heterogeneous computing and the complications it presents to programmers has increased the tilt away from static programming.

In his engaging SC19 talk, Edelman noted:

“When you’re writing various algorithms, you don’t necessarily want to think about whether you’re on a GPU, or whether you’re on a distributed computer. You don’t necessarily want to think about how you’ve implemented the specific data structure. What you want to do is talk about what you want to compute, not how you want to compute it, right? That is the big problem, to get people to talk about what you want to compute, and not how you want to compute it. Because if you put in your software, how you’re going to compute it, and if your software is filled with that muck, I promise you, nobody’s ever going to change it. No one’s going to innovate on it. When the person who wrote it is no longer in the project, no one’s ever going to touch it.

“[S]ome of the reasons why Julia is working very well is because we have particularly well-designed abstractions. We have something called multiple dispatch and we have a very careful balance between the static and dynamic. It interfaces with LLVM. It plays nicely with Python. We also have had lots of people take legacy codes in MPI, and plug them into Julia – you don’t get all the benefits, but what you do have, which might be the most important benefit, is other people can now run your code once it’s inside of Julia. So it’s much easier for other people. You can actually give your old code new life when you plug it into a higher level language.”

Julia, say advocates, minimizes performance penalties because it was designed from the outset with parallel computing in mind and with making use of high-performing abstractions able to exploit the latest libraries and deliver portability. Edelman presented an example in which a group of researchers decided to scrap their legacy climate code in Fortran and write it from scratch in Julia. There was some discussion around performance tradeoffs they might encounter in the move to a high level programming language. The group was willing to accept a 3x slowdown for the flexibility of the language. Instead, said Edelman, the switch produced 3x speedup.

 

He briefly presented a second example in which Julia was used with GPUs and skirted CUDA.

“I’m going to go over really fast a little bit on how we do Julia on GPUs. Because we have these different levels of abstraction, we’re able to reason about what’s going on at various different levels. If you only have that very lowest level on a GPU again, you can roll up your sleeves and work really hard, but you don’t get any code reuse. We have the saying in the Julia world, where if you’ve copied and pasted code, and you just modified a few things, then you’ve done something wrong. We’re trying to eliminate the copying and pasting the code, not only by you, but somebody else in the community shouldn’t have to go and take somebody else’s code and copy and paste it. That shouldn’t be necessary. So there’s a lot going on in here (see slide below). But the main point is that it’s not just queued in Julia, but it’s actually Julia running on the GPUs. And so that’s, that’s pretty exciting.”

Edelman’s perspective on coding and mathematics is interesting. “You know, a lot of us get this impression from universities and from teaching that you learn some math and then you [build] an algorithm, and then you code it up as if there is the algorithm first, and then the coding is sort of the secondary. But you know, more and more now, the code is the math,” said Edelman. This idea, he suggests, should inform our thinking about coding generally; it’s yet another effective abstraction.

The video is best watched (or listened to) to get the breezy yet substantive flavor of Edelman’s ideas and Julia’s capabilities.

“Julia was always designed to be a high level of parallel computing language, even from day one. That’s what I wanted. This is the problem that I personally wanted to see solved. We’re not fully there yet. But Julia is a highlight. You could do distributed computing, you could do GPU computing, you could do shared memory computing. We have models, you know, asynchronous computing, whatever you’d like to do we have models to do it now. And the real question, the one that everybody asked, the one that none of us really knows how to do, the deep intellectual problem is how to put it all together. But if we all work together at it, if we actually all share code, and, you know, hammer away at it, I think we could actually solve this problem.”

Link to intro paper: https://arxiv.org/pdf/1209.5145.pdf

Link to Fernbach Award announcement: https://www.hpcwire.com/off-the-wire/julia-computing-chief-scientist-alan-edelman-wins-prestigious-ieee-sidney-fernbach-award/

Link to SC19 video: https://www.youtube.com/watch?v=nwdGsz4rc3Q

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a variety of observatories and astronomers – but when COVID Read more…

By Oliver Peckham

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with the enterprise strengths of its recent acquisitions, notably Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Preparing for Exascale Science on Day 1

October 14, 2020

Science simulation, visualization, data, and learning applications will greatly benefit from the massive computational resources available with future exascal Read more…

By Linda Barney

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This