Julia Programming’s Dramatic Rise in HPC and Elsewhere

By John Russell

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance on computationally intensive problems were C and Fortran – maybe they still are. Fast forward to 2020 and Julia is making a run at the top and Edelman won last year’s IEEE Sidney Fernbach Award presented at SC19 for, among other things, his work on Julia.

Consider recent stats on Julia adoption. By January 1, 2019, reports Julialang.org, the total downloads of Julia reached 7.3 million. That number jumped to 12.9 million, a 77 percent increase, by January 1, 2020. The number of published citations for same period rose 66 percent from 1048 to 1680. In his SC19 talk, Edelman noted that as of October 2019 there were 3,119 Julia packages available, up from 1,688 at the year’s start. Those numbers are impressive all around.

In September, Julia joined the ranks of computing languages that have achieved peak performance exceeding one petaflop per second – the so-called ‘Petaflop Club.’ The Julia application that achieved this milestone is called Celeste. The Celeste team developed a new parallel computing method to process the entire Sloan Digital Sky Survey dataset and loaded an aggregate of 178 terabytes of image data to produce the most accurate catalog of 188 million astronomical objects in just 14.6 minutes. Celeste achieved peak performance of 1.54 petaflops using 1.3 million threads on 9,300 Knights Landing (KNL) nodes of the Cori supercomputer at NERSC – a performance improvement of 1,000x in single-threaded execution.

Alan Edelman, MIT

You get the idea. Julia is on a roll. Whether Julia will challenge Python the way Python once challenged and then surpassed Java is an interesting question being bandied about. What’s clear is that after percolating along steadily during its early years, Julia use is growing quickly – much to Edelman’s delight.

The tension between the high performance delivered by so-called static programming languages and the lesser performance delivered by high-level programming languages, which emphasize abstraction, speed of development, and portability, hasn’t gone away, noted Edelman. But convenience with sufficient performance is winning out. Moreover, the rise of heterogeneous computing and the complications it presents to programmers has increased the tilt away from static programming.

In his engaging SC19 talk, Edelman noted:

“When you’re writing various algorithms, you don’t necessarily want to think about whether you’re on a GPU, or whether you’re on a distributed computer. You don’t necessarily want to think about how you’ve implemented the specific data structure. What you want to do is talk about what you want to compute, not how you want to compute it, right? That is the big problem, to get people to talk about what you want to compute, and not how you want to compute it. Because if you put in your software, how you’re going to compute it, and if your software is filled with that muck, I promise you, nobody’s ever going to change it. No one’s going to innovate on it. When the person who wrote it is no longer in the project, no one’s ever going to touch it.

“[S]ome of the reasons why Julia is working very well is because we have particularly well-designed abstractions. We have something called multiple dispatch and we have a very careful balance between the static and dynamic. It interfaces with LLVM. It plays nicely with Python. We also have had lots of people take legacy codes in MPI, and plug them into Julia – you don’t get all the benefits, but what you do have, which might be the most important benefit, is other people can now run your code once it’s inside of Julia. So it’s much easier for other people. You can actually give your old code new life when you plug it into a higher level language.”

Julia, say advocates, minimizes performance penalties because it was designed from the outset with parallel computing in mind and with making use of high-performing abstractions able to exploit the latest libraries and deliver portability. Edelman presented an example in which a group of researchers decided to scrap their legacy climate code in Fortran and write it from scratch in Julia. There was some discussion around performance tradeoffs they might encounter in the move to a high level programming language. The group was willing to accept a 3x slowdown for the flexibility of the language. Instead, said Edelman, the switch produced 3x speedup.

 

He briefly presented a second example in which Julia was used with GPUs and skirted CUDA.

“I’m going to go over really fast a little bit on how we do Julia on GPUs. Because we have these different levels of abstraction, we’re able to reason about what’s going on at various different levels. If you only have that very lowest level on a GPU again, you can roll up your sleeves and work really hard, but you don’t get any code reuse. We have the saying in the Julia world, where if you’ve copied and pasted code, and you just modified a few things, then you’ve done something wrong. We’re trying to eliminate the copying and pasting the code, not only by you, but somebody else in the community shouldn’t have to go and take somebody else’s code and copy and paste it. That shouldn’t be necessary. So there’s a lot going on in here (see slide below). But the main point is that it’s not just queued in Julia, but it’s actually Julia running on the GPUs. And so that’s, that’s pretty exciting.”

Edelman’s perspective on coding and mathematics is interesting. “You know, a lot of us get this impression from universities and from teaching that you learn some math and then you [build] an algorithm, and then you code it up as if there is the algorithm first, and then the coding is sort of the secondary. But you know, more and more now, the code is the math,” said Edelman. This idea, he suggests, should inform our thinking about coding generally; it’s yet another effective abstraction.

The video is best watched (or listened to) to get the breezy yet substantive flavor of Edelman’s ideas and Julia’s capabilities.

“Julia was always designed to be a high level of parallel computing language, even from day one. That’s what I wanted. This is the problem that I personally wanted to see solved. We’re not fully there yet. But Julia is a highlight. You could do distributed computing, you could do GPU computing, you could do shared memory computing. We have models, you know, asynchronous computing, whatever you’d like to do we have models to do it now. And the real question, the one that everybody asked, the one that none of us really knows how to do, the deep intellectual problem is how to put it all together. But if we all work together at it, if we actually all share code, and, you know, hammer away at it, I think we could actually solve this problem.”

Link to intro paper: https://arxiv.org/pdf/1209.5145.pdf

Link to Fernbach Award announcement: https://www.hpcwire.com/off-the-wire/julia-computing-chief-scientist-alan-edelman-wins-prestigious-ieee-sidney-fernbach-award/

Link to SC19 video: https://www.youtube.com/watch?v=nwdGsz4rc3Q

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six thousand miles away in Alaska, caused tsunamis across the entir Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Researchers Achieve 99 Percent Quantum Accuracy with Silicon-Embedded Qubits 

January 20, 2022

Researchers in Australia and the U.S. have made exciting headway in the quantum computing arms race. A multi-institutional team including the University of New South Wales and Sandia National Laboratory announced that th Read more…

Trio of Supercomputers Powers Estimate of Carbon in Earth’s Outer Core

January 20, 2022

Carbon is one of the essential building blocks of life on Earth, and it—along with hydrogen, nitrogen and oxygen—is one of the key elements researchers look for when they search for habitable planets and work to unde Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

AWS Solution Channel

shutterstock 718231072

Accelerating drug discovery with Amazon EC2 Spot Instances

This post was contributed by Cristian Măgherușan-Stanciu, Sr. Specialist Solution Architect, EC2 Spot, with contributions from Cristian Kniep, Sr. Developer Advocate for HPC and AWS Batch at AWS, Carlos Manzanedo Rueda, Principal Solutions Architect, EC2 Spot at AWS, Ludvig Nordstrom, Principal Solutions Architect at AWS, Vytautas Gapsys, project group leader at the Max Planck Institute for Biophysical Chemistry, and Carsten Kutzner, staff scientist at the Max Planck Institute for Biophysical Chemistry. Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire