ECP Update: Satisfying DOE and Building SDKs for Heterogeneous Exascale Architecture

By John Russell

February 11, 2020

Delivering an exascale-ready software infrastructure is the Exascale Computing Project’s mission, a goal towards which it has steadily marched although ECP doesn’t grab headlines the way pre- and planned exascale systems do. This week ECP posted an interview with ECP director Doug Kothe talking about the accountability DOE imposes as well a ECP’s approach to developing software development kits (SDKs) able to cope with exascale’s varying heterogeneous architectures and a growing number of accelerator options.

Here’s a soundbite: “[I]n our Software Technology portfolio led by Mike Heroux—we’re not narrowing down to one particular programming model. We do see a very diverse accelerated node ecosystem coming, and we think that’s good for the community and good for us, meaning not just one type of accelerator but multiple types of accelerators, say, from Nvidia, AMD, and Intel.

“And so that’s really forcing us—and I think this is for the good of the community and moving forward—to have a diverse, robust software stack that can enable applications to, ideally, seamlessly port and get performance on multiple GPUs. This is a very difficult and daunting task, but we’re now really getting into the details of how to develop whether it’s abstraction layers or push for certain programming models that best allow our applications to achieve performance on these different types of accelerators.”

The latest podcast by ECP in which Kothe (on left) talks with Mike Bernhardt, ECP communication director, about process and product is a good listen.

So far ECP has roughly seventy different unique products in its Software Technology portfolio.

Many of these products, noted Kothe, have similar functionalities and by grouping these together, such as in programming models or in math libraries or in I/O or in DataVis, ECP is working to ensure interoperability, what Kothe calls a “nice sort of horizontal integration, meaning applications can ideally plug and play some of these techniques.”

“The requirement for an application is to not swallow an SDK whole. An SDK in Math Libraries might contain right now, say, a dozen different types of math libraries. But by being able to pull in an SDK, now say an application can literally plug and play and test different types of math libraries, maybe sparse linear solvers or dense solvers or Eigensolvers or whatever. And so it’s going to be a tremendous advantage for applications in the HPC and the software community in general to be able to have these things containerized and put together,” said Kothe.

“The SDKs roll up into what we call the Extreme-scale Scientific Software Stack, or E4S. And we’ve released several versions of E4S; if you go to E4S.io, our latest release, 1.0, occurred in November, last fall. That release has fifty different full-release products, and I think a half dozen partial-release products out there for folks to try in four different types of containers. And we’re really optimistic, and we’re really seeing the returns on our investment in doing things like this, not just for ECP but the community at large, both nationally and internationally. So that’s a key responsibility of ECP, to ensure what I’ll claim is better software quality, better robustness, better interoperability. That’s going to benefit us all.”

No surprise, abstraction looms large in ECP programing model preferences and in building SDKs. In particular, the Kokkos and Raja project are prominent players.

As described by ECP, “Exascale systems are characterized by computer chips with a large number of cores, a smaller amount of memory, and a range of various architectures, which can result in decreased productivity for library and application developers who need to write specialized software for each system. The Kokkos/RAJA project provides high-level abstractions for expressing the necessary parallel constructs that are then mapped onto a runtime to achieve portable performance across current and future architectures, freeing developers who adopt these technologies of the burden of writing specialized code for each system.”

Progress to date:

  • The Kokkos team developed a parallel programming model with flexible enough semantics that it can be mapped on
    a diverse set of exascale architectures including current multi-core CPUs and massively parallel GPUs.
  • The Kokkos library implementation consists of a portable Application Programming Interface (API) and architecture-specific backends, including OpenMP, Intel Xeon Phi, and CUDA on NVIDIA GPUs.
  • The RAJA team produced a collection of C++ software abstractions that enable architecture portability for exascale applications using standard C++11 features and provided support for multiple backends including OpenMP, CUDA, Intel TBB, and AMD GPUs.
  • The Kokkos/RAJA team developed training material and held training events to enable adoption of their abstractions.

Said Kothe, “We’re finding in our application projects—we have twenty-four projects that really map to almost fifty different, separate, distinct codes. Order of fifteen or sixteen have already said, “We’re committing to these abstraction layers.” We’re also seeing the vendors do the same, which is, “Hey, we’re going to make sure that Kokkos and RAJA are not only ported but performant for you.” In other words, they’re working closely with us to make sure that those aren’t high-risk bets that the applications make, but lower-risk bets, meaning they’re going to be there. They’re going to be not just ported but performant.”

Link to ECP podcast: https://exascaleproject.org/project-update-excellent-review-results-readiness-for-accelerated-architectures-more/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire