China Researchers Set Distance Record in Quantum Memory Entanglement

By John Russell

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote quantum memories over great distances. Last week a group of researchers from University of Science and Technology of China reported in Nature having successfully entangled quantum memories made from atomic ensembles and maintained entanglement over 22 kilometers of “field-deployed fiber” and 50 kilometers of coiled fiber in a lab.

This achievement of city-scale distance ‘transmission’ over fiber using atomic ensembles as quantum memory is a first and is catching attention. There’s an account of the work posted on New Scientist noting, “Individual photons have been entangled across distances exceeding 1000 kilometres, but for larger systems of particles, which hold more information, maintaining this entanglement is harder.” In their work, the researchers used ensembles of ~100 million cooled rubidium atoms in a vacuum chamber as quantum memory.

The use of atomic ensembles for quantum memory has been an active area for some time and presents characteristics that enhance on-demand entanglement but also are challenging to manage. The details of the newly reported approach are best read directly from the paper (Entanglement of two quantum memories via fibres over dozens of kilometres). In brief, the researcher created two separate ‘memory’ nodes in the same lab and were able to entangle them in a way not unlike what would be needed for signal repeater in a quantum internet. This excerpt is from the paper:

“A quantum internet that connects remote quantum processors should enable a number of revolutionary applications such as distributed quantum computing. Its realization will rely on entanglement of remote quantum memories over long distances. Despite enormous progress, at present the maximal physical separation achieved between two nodes is 1.3 kilometres, and challenges for longer distances remain. Here we demonstrate entanglement of two atomic ensembles in one laboratory via photon transmission through city-scale optical fibres.

“The atomic ensembles function as quantum memories that store quantum states. We use cavity enhancement to efficiently create atom-photon entanglement and we use quantum frequency conversion to shift the atomic wavelength to telecommunications wavelengths. We realize entanglement over 22 kilometres of field-deployed fibres via two-photon interference and entanglement over 50 kilometres of coiled fibres via single-photon interference. Our experiment could be extended to nodes physically separated by similar distances, which would thus form a functional segment of the atomic quantum network, paving the way towards establishing atomic entanglement over many nodes and over much longer distances.”

Shown below is a diagram of the experiment and caption from the paper.

 

Schematic of the remote entanglement generation between atomic ensembles Two quantum memory nodes (nodes A and B in one laboratory) are linked by fibres to a middle station for photon measurement. In each node, a ⁸⁷Rb atomic ensemble is placed inside a ring cavity. All atoms are prepared in the ground state at first. We first create a local entanglement between atomic ensemble and a write photon by applying a write pulse (blue arrow). Then the write-out photon is collected along the clockwise (anticlockwise) cavity mode and sent to the QFC module. With the help of a PPLN-WG chip and a 1,950-nm pump laser (green arrow), the 795-nm write-out photon is converted to the telecommunications O band (1,342 nm). The combination of a half-wave-plate (HWP) and a quarter-wave-plate (QWP) improves the coupling with the transverse magnetic polarized mode of the waveguide. After noise filtering, two write-out photons are transmitted through long fibres, interfered inside a beamsplitter and detected by two superconducting nanowire single-photon detectors (SNSPDs) with efficiencies of about 50% at a dark-count rate of 100 Hz. The effective interference in the middle station heralds two entangled ensembles. Fibre polarization controllers (PCs) and polarization beamsplitters (PBSs) before the interference beamsplitter (BS) are intended to actively compensate polarization drifts in the long fibre. To retrieve the atom state, we apply a read pulse (red arrow) counter-propagating to the write pulse. By phase-matching the spin-wave and cavity enhancement, the atomic state is efficiently retrieved into the anticlockwise (clockwise) mode of the ring cavity. DM refers to dichroic mirror, LP refers to long-pass filter and BP refers to band-pass filter.

The researchers note their work is an important first step and discuss next steps: “Extending these experiments to nodes separated by much longer distances will enable us to perform advanced quantum information tasks, such as efficient quantum teleportation over long distances. By incorporating more quantum memories, our experiment may be extended to entangle multiple quantum memories over long distances via multi-photon interference. One may also create two pairs of remote atomic entanglement over sub-links and extend the distance of atomic entanglement via entanglement swapping, following the quantum repeater scheme. Concatenating this process could extend the distance sufficiently to beat the limit of direct transmission.”

Link to New Scientist article written by Leah Crane: https://www.newscientist.com/article/2233317-record-breaking-quantum-memory-brings-quantum-internet-one-step-closer/#ixzz6EVDW1B4F

Link to Nature paper: https://www.nature.com/articles/s41586-020-1976-7.epdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire