Cray to Provide NOAA with Two AMD-Powered Supercomputers

By Tiffany Trader

February 24, 2020

Editor’s note: This article is the follow-up to our initial coverage. We’ve since got the system details, which we report on here. Also read our related coverage on NOAA’s AI strategy.

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. The long runway gives the managed service provider, CSRA (a General Dynamics Information Technology company), about a year to get the equipment in place, configured and accepted, and then from February of 2021 to February of 2022, NOAA will transition its code base over from the current systems.

With this hardware upgrade, ongoing model enhancements and NOAA’s emerging Earth Prediction Innovation Center (EPIC), NOAA says the United States is keeping pace with other leading weather forecasting centers around the world. The prominence of the U.S. weather forecasting capabilities has at times been called into question, perhaps most notably when U.S. models stumbled while forecasting Hurricanes Sandy and Harvey.

The new supercomputing deployment represents a tripling of operational computational capacity for the U.S. weather forecasting agency.

Each identical Cray Shasta system spans 2,560 dual-socket nodes — housed in 10 cabinets — powered by second-gen AMD Epyc ‘Rome’ 64-core 7742 processors, connected by Cray’s Slingshot network. The total system memory per machine is 1.3 petabytes. Cray’s ClusterStor systems provide 26 petabytes of storage per site (a flash storage system with 614 terabytes of usable space and two HDD file systems with 12.5 petabytes of usable storage).

The peak theoretical performance of each Cray system is 12 petaflops, which combined with NOAA’s research and development machines brings the agency’s aggregate operational and research capacity to 40 peak petaflops. Shasta systems haven’t hit the Top500 list yet, but at a ballpark 80 percent Linpack efficiency, they’d be looking at a 25th place ranking on the current (Nov. 2019) list. As always though — and no more so than for weather prediction and storm forecasting — the only thing that matters is real-world performance. HPCwire spoke with some of the NOAA/NWS HPC team about what international leadership means to them.

“You can imagine there are a lot of different ways you can measure leadership,” said Brian Gross, director of Environmental Modeling Center for NOAA’s National Weather Service. “[You can] measure it by hurricane track, accuracy of the upper level flow, surface temperature anomalies… it really depends on what your application is. [Regarding] how good the model is, we’re always compared to some of the [leading] centers worldwide. And we actually work pretty closely with the other worldwide operational centers. We have scientific exchanges with the European Center, for example. So the idea that we’re in a fierce competition is kind of a weird one for us as we work with these folks on a pretty regular basis.”

Photo of Luna courtesy NOAA (2016)

Housed at GDIT-managed facilities in Manassas, Virginia, and Phoenix, Arizona, the new Crays will replace eight smaller machines that comprise a heterogeneous mix of processor and cluster types. Moving to a unified architecture will streamline NOAA’s operations, while maintaining the weather center’s primary-plus-backup workflow (more on that below).

The outgoing equipment includes older IBM iDataplex gear, a pair of Cray XC40s (Luna and Surge), that were deployed  in 2016, and a pair of Dell systems (Mars and Venus) installed in 2018. The agency is currently adding additional Dell machines to update the iDataplex systems so they are maintainable for the final two years of the managed service contract (with IBM).

Recall that NOAA’s operational centers are still managed by IBM, which procured the Cray and Dell systems after its x86 business was transferred to Lenovo in 2014. That IBM contract is up in February of 2022, at which time, GDIT will take over.

The transition to a new managed service provider coincides with a change in filesystem technology. After about 20 years of being on GPFS, NOAA is switching its systems over to Lustre. The move should not be seen as reflecting NOAA’s preference for a given filesystem, rather the agency provided the specification for performance-based requirements for the contract and what it required in terms of availability (99 percent system availability) as part of the open bid process and let industry decide what the best fit was in terms of the total proposed solution. “We were essentially looking for what the best fit was for what the integrator could provide…[and] the best performance-per-dollar with the availability requirements that we require for operational use of the system,” David Michaud, director, Office of Central Processing for NOAA’s National Weather Service, told HPCwire.

The decision to go with homogeneous x86 systems was made in a similar manner. NOAA asked the integrator to provide the best solution on the benchmark codes it utilizes. Meanwhile NOAA is exploring GPU technology on its research and development systems, and keeping its options open for the next hardware procurement. The contract with GDIT (there’s an 8-year base with a 2-year optional renewal) is split into two periods. The first task order covers the two Cray CPU-based systems, but the second period is still undefined, affording NOAA time to explore and assess the realm of possibilities as technology develops and as leadership computing facilities, many of which have moved or are moving to heterogeneous GPU-powered systems, help develop and influence technological advancements.

The twin Cray systems are perfectly symmetrical between geographically-segregated sites (Manassas, Virginia, and Phoenix, Arizona), and take turns acting as the primary or backup system. Michaud explained that on any given day, NOAA can run at production, its full operational 24×7 modeling suite on one of the systems. The backup system is used for transition to operations and other development work while it’s not in use as the primary, and NOAA can switch the orientation of the primary and the backup site in operations within a 15 minute period, and does so regularly, at least on a monthly basis.

The arrangement assures redundancy, as data is always mirrored to the backup system, offering advantages from a troubleshooting and maintenance perspective and providing an added layer of protection for the mission- and safety-critical work of weather prediction. “If we make a change to one, we know we can test it, and then we can apply the change to the back-up system as well,” said Michaud. “We know if one’s not behaving similar to the other, we can identify the differences and troubleshoot them. And then, the other thing that’s really important is for the type of work that we do, given storm systems and other weather systems can be massive in scale and encompass hundreds of miles, it’s really beneficial for us to have the separation of the sites, so that if we have any issues on one site, we can switch to the other site.”

The significant supercomputing upgrade targets three separate areas for model improvements: resolution, complexity and the size of ensembles. “We want to go to higher resolutions that would capture the finer-scale features in the phenomena we’re predicting,” Gross told us. “We want to create and implement more comprehensive models to include as much of the complexity that is going on in the atmosphere as we can in our models — can we improve our model physics, for example. And then the last piece is growing the size of ensembles that we use, which give us a lot of information in how certain we can be in any particular forecast; ensembles inform our level of confidence in the numerical guidance that we produce. All of these areas are going to be improved when we move on to the system.”

Last summer, NOAA upgraded its deterministic global forecast system, and its next big upgrade will be the ensemble system. Currently, NOAA is incorporating the new dynamical core that it put into the deterministic Global Forecast System (GFS) into the Global Ensemble Forecast System (aka the GES). “We’re aligning the ensemble system now with the deterministic system — and part of that is complexity and ensemble size. We’re looking forward to increasing the ensemble size of the GES so that we can get better information on forecast services,” said Gross.

NOAA’s contract with GDIT has a total estimated value of $505.2 million, spanning a base period of eight years with a two-year optional renewal. GDIT provides its supercomputing resources as-a-service through NOAA’s Weather and Climate Operational Supercomputing System (WCOSS) contract. The value of the first task order, written under the larger contract, is $150 million dollars to provide managed services over five years.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This