Quantum Bits: Q-Ctrl, D-Wave Start News Flow on Eve of APS March Meeting

By John Russell

February 27, 2020

The annual trickle of quantum computing news during the lead-up to next week’s APS March Meeting 2020 has begun. Yesterday D-Wave introduced a significant upgrade to its quantum portal and tool suite, Leap2. Today quantum computing start-up Q-Ctrl announced the beta release of its ‘professional-grade’ tool Boulder Opal software claiming 10-100X improvements in error reduction and hardware stability.

No doubt more quantum news is coming. The American Physical Society’s annual March Meeting, being held in Denver this year, always features a heavy dose of quantum computing research. Last year, for example, IBM used the forum to mount a public push for its Quantum Volume benchmark. (See HPCwire coverage, IBM Pitches Quantum Volume as Benchmarking Tool for Gate-based Quantum Computers).

This year’s meeting is again packed with QC presentations. Here are a very few of the quantum computing topics and their presenting organizations along with links to the talks’ abstracts. (Many organization have several talks.)

Pivoting to this week’s news, Q-Ctrl’s new product is accompanied by paper (Software tools for quantum control: Improving quantum computer performance through noise and error suppression) that serves both as a primer on software error mitigation approaches and a description of Q-Ctrl’s products. A Sydney, Australia-based start-up, founded in 2017, Q-Ctrl, as it name implies, is focused designing firmware for quantum computers and other quantum devices.

The company describes its Boulder Opal tool thusly, “BOULDER OPAL is an advanced Python-based toolkit for developers and R&D teams using quantum control in their hardware or theoretical research. Technology agnostic and delivered via the cloud, BOULDER OPAL enables building and outputting new error-robust logic operations for even the most complex quantum circuits. The result for users is greater performance from today’s quantum computing hardware.”

Asked about the 10-100x improvements cited, company CEO Michael Biercuk responded by email, “The performance benchmarking of our solutions was based on experiments with real quantum computers using both trapped ions and superconducting circuits.  For instance, we showed factors of 10-100X improvement in hardware performance along the key metrics of:

  • Error robustness to quasistatic detuning offsets or pulse-amplitude errors (both trapped-ions and superconducting circuits)
  • Homogenization of errors across a multiqubit device (using 10 qubit parallel randomized benchmarking)
  • Stabilization of errors in time, using repeated two-qubit gates on trapped ions
  • Reduction of error correlations, as measured using randomized benchmarking on trapped ions.”

Perhaps not surprisingly there have been a fair number of start-ups in the nascent quantum computing software ecosystem. Of course, some of the bigger players are trying to play in all areas (hardware, stack development, tools and aps). Government quantum work is also steadily ratcheting up – for example the XACC software framework and the QCOR programming language and compiler developed by DoE.

The figure below from Q-Ctrl’s document shows its approach

FIG. 3. Relationships between Q-CTRL products, connectivity via API to the core cloud-compute engine, and demonstration of various means of user interaction with Q-CTRL software. For instance, BOULDER OPAL is commonly accessed through a Python interface, or in combination with the last-mile-integration package may be built directly into user quantum hardware. Meanwhile core functionality may be accessed by users building custom tools via the Q-CTRL API.

Turning to D-Wave. Its upgrade to Leap (now Leap2) is another step forward. Recall that D-Wave currently has a 2000-qubit system (quantum annealing, not gate-based) and has promised a 5000-qubit machine, named Advantage, in 2020. Last year D-Wave sketched out a rough 18-month technology roadmap including software and hardware advances.

The new Leap2 includes:

  • Hybrid solver service:The hybrid solver service is a managed cloud-based service allowing users to easily solve large and complex problems of up to 10,000 variables. The hybrid solver automatically runs problems on a collection of quantum and classical cloud resources, using D-Wave’s advanced algorithms to decide the best way to solve a problem.
  • Integrated Developer Environment (IDE): The IDE is a prebuilt, ready-to-code environment in the cloud for quantum hybrid Python development. The Leap IDE has the latest Ocean SDK set up and configured, and includes the new D-Wave problem inspector and Python debugging tools. Seamless GitHub integration means that developers can easily access the latest examples and contribute to the Ocean tools from within the IDE.
  • Problem inspector: The problem inspector allows more advanced quantum developers to visually see how their problems map onto the quantum processing unit (QPU). By showing the logical and embedded structure of a problem, the inspector displays the solutions returned from the QPU and provides alerts that allow developers to improve their results.
  • Flexible access:New to Leap 2 are hybrid offerings with price plans for all skill and investment levels, allowing access to even more flexible increments of computing time across quantum and classical systems. Users will continue to benefit from both paid and free, real-time access to a D-Wave 2000Q quantum computer to submit and run applications.

Commenting on Leap2 in the official release, CEO Alan Baratz said, “With Leap, we opened the door to real-time quantum access. With Leap 2, we’re giving developers and businesses the key to business applications. By delivering a hybrid offering, we’re removing many of the barriers related to complexity and problem size. Developers and enterprise leaders need the tools and support to turn their ideas and innovations into quantum applications that have a real impact on their business. You can’t capture new revenue or solve the most difficult problems facing your industry if you don’t have the ability to quickly ideate, build, and deploy quantum applications. Leap 2 bridges that gap for the first time.”

How close we are to running practical applications is an interesting question. Most observers agree it will be many years before we have fault-tolerant universal quantum computers. That said a lot of significant progress has been made. Many think that pairing a quantum annealer computer or a so-called NISQ (noisy intermediate scale quantum) gate-based computer to a specific problem well-suited for its architecture may produce quantum advantage for a particular application sooner, perhaps in just a couple of years.

Recently, HPCwire interviewed Raphael Pooser, who leads the Quantum Computing Testbed project at ORNL. The discussion covered not only on the testbed project – “Our goal is to benchmark every quantum computer that we can get our hands on” – but also QC progress generally and also quantum communication. He provides insight on near and long-term progress and opportunities for quantum. HPCwire will publish that interview soon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NIST/Xanadu Researchers Report Photonic Quantum Computing Advance

March 3, 2021

Researchers from the National Institute of Standards and Technology (NIST) and Xanadu, a young Canada-based quantum computing company, have reported developing a full-stack, photonic quantum computer able to carry out th Read more…

By John Russell

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and even to this day, the largest climate models are heavily con Read more…

By Oliver Peckham

Deloitte Outfits New AI Computing Center with Nvidia DGX Gear

March 3, 2021

With AI use continuing to grow in adoption throughout enterprise IT, Deloitte is creating a new Deloitte Center for AI Computing to advise its customers, explain the technology and help them use it in their ongoing busin Read more…

By Todd R. Weiss

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective immediately. Hotard replaces long-time Cray exec Pete Ungaro Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been founding director of ORNL's Future Technologies Group which i Read more…

By John Russell

AWS Solution Channel

Moderna Accelerates COVID-19 Vaccine Development on AWS

Marcello Damiani, Chief Digital and Operational Excellence Officer at Moderna, joins Todd Weatherby, Vice President of AWS Professional Services Worldwide, for a discussion on developing Moderna’s COVID-19 vaccine, scaling systems to enable global distribution, and leveraging cloud technologies to accelerate processes. Read more…

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

By Mariana Iriarte

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

By Oliver Peckham

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2020) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

By Tiffany Trader

ORNL’s Jeffrey Vetter on How IRIS Runtime will Help Deal with Extreme Heterogeneity

March 2, 2021

Jeffery Vetter is a familiar figure in HPC. Last year he became one of the new section heads in a reorganization at Oak Ridge National Laboratory. He had been f Read more…

By John Russell

HPC Career Notes: March 2021 Edition

March 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it Read more…

By Mariana Iriarte

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

Japan to Debut Integrated Fujitsu HPC/AI Supercomputer This Spring

February 25, 2021

The integrated Fujitsu HPC/AI Supercomputer, Wisteria, is coming to Japan this spring. The University of Tokyo is preparing to deploy a heterogeneous computing Read more…

By Tiffany Trader

Xilinx Launches Alveo SN1000 SmartNIC

February 24, 2021

FPGA vendor Xilinx has debuted its latest SmartNIC model, the Alveo SN1000, with integrated “composability” features that allow enterprise users to add their own custom networking functions to supplement its built-in networking. By providing deep flexibility... Read more…

By Todd R. Weiss

ASF Keynotes Showcase How HPC and Big Data Have Pervaded the Pandemic

February 24, 2021

Last Thursday, a range of experts joined the Advanced Scale Forum (ASF) in a rapid-fire roundtable to discuss how advanced technologies have transformed the way humanity responded to the COVID-19 pandemic in indelible ways. The roundtable, held near the one-year mark of the first... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Intel Teases Ice Lake-SP, Shows Competitive Benchmarking

November 17, 2020

At SC20 this week, Intel teased its forthcoming third-generation Xeon "Ice Lake-SP" server processor, claiming competitive benchmarking results against AMD's second-generation Epyc "Rome" processor. Ice Lake-SP, Intel's first server processor with 10nm technology... Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

By Tiffany Trader

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

By Oliver Peckham

It’s Fugaku vs. COVID-19: How the World’s Top Supercomputer Is Shaping Our New Normal

November 9, 2020

Fugaku is currently the most powerful publicly ranked supercomputer in the world – but we weren’t supposed to have it yet. The supercomputer, situated at Japan’s Riken scientific research institute, was scheduled to come online in 2021. When the pandemic struck... Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire