Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

By John Russell

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve the National Nuclear Security Administration (NNSA), will use AMD’s next-gen ‘Genoa’ Epyc CPUs and Radeon GPUs and deliver 2 exaflops (peak double-precision) performance, a 30 percent increase over the original spec. The new system, expected to be put into service in 2023, will be 10x faster than Summit, the fastest publicly-ranked supercomputer in the world today (Top500, November 2019).

The choice of AMD processor technology had not been made when the Department of Energy first announced the ~$600 million El Capitan procurement last August. Cray, now part of HPE, was announced as the prime contractor as was selection of its Shasta architecture. More detail on the CPU/GPU selections along with a few other system elements were presented in a media pre-briefing this week given by Bronis de Supinski, CTO, LLNL, Steve Scott, SVP, senior fellow, and CTO, HPE, and Forrest Norrod, SVP and GM, datacenter and embedded systems group, AMD.

HPE, through Cray, has been the big winner so far in the U.S. Exascale sweepstakes, obtaining contracts for all three systems – Aurora, with an Intel CPU/GPU pair; Frontier, with another AMD CPU/GPU pair, and El Capitan, which we now know will also feature AMD processors and AMD accelerators. After re-entering the HPC server market with its Epyc line of CPUs in 2017, AMD at first treaded lightly in pairing Epyc with Radeon GPUs in high-end servers. That clearly has changed.

Steve Scott, HPE/Cray

Talking about the delayed processor selections for El Capitan, Scott said, “The strategy that they’ve (DoE/LLNL) used – and increasingly others are using it as well – is to choose the system architecture, start getting that in place, and then make the processor choice as late as possible in the process. By doing that you can you get better visibility. Your headlights are illuminating farther in the future. The processor roadmaps have continued to improve and by making that decision later you tend to get a better result in the end, and that’s exactly what happened here.”

He declined to specify the process technology for the new processors but there’s been speculation Genoa will be fabbed on a 5nm process. We may know more soon, “We’ll be unpacking more the details in those parts as time goes by,” said AMD’s Norrod, “Our next disclosure on Genoa will, quite frankly…we’ll say a little bit about that at our financial analyst day which is this Thursday.” That’s tomorrow.

El Capitan’s primary mission is within NNSA’s advanced simulation and computing program, which uses simulations to certify the country’s nuclear stockpile is safe, secure and reliable. “To provide that certification we require complex simulations and as the nuclear stockpile ages, the complexity of the simulations only increases and need to be able to use larger and larger systems,” said de Supinski.

El Capitan will leverage HPE’s Shasta architecture which is at the core of the most recent refresh of the HPE/Cray advanced scale product line. Other core components include a new software stack, new Slingshot interconnect technology, and new storage system.

“[The] new software stack that provides a much more dynamic cloud like environment for hybrid workflows,” said Scott. “It has open documented APIs between the software components. It has a management system that’s built with redundant microservices and managed as a Kubernetes cluster, and has robust container support to allow users to take any workload that runs anyplace and run under this system as well.” A systems monitoring framework will run underneath the stack to optimize performance and help predict failures.”

Calling it a future-proof design, Scott said “We’ve designed it to accommodate a wide diversity of processors, different amounts of power, different types of processing, different physical sizes of the processor and memory system. And we’ve given it the power and the cooling headroom to handle processors that are headed again in the years ahead up to the kilowatt power levels.”

El Capitan will be liquid cooled and have an energy budget between 30-to-40 megawatts with expectations it will end up closer to 30MW than 40MW according to Scott. Slingshot and high performance Ethernet comprise the planned system interconnect. The planned storage system is HPE’s new ClusterStor E1000, which Scott said is, “a highly flexible tiered storage system using flash and hard drive partitions That allows you to individually optimize for performance as well as capacity and then does intelligent tiering of data between the partitions and this attaches directly to the slingshot interconnect, which helps take out cost and complexity and latency.”

Shasta Compute Blade

Specific performance specs were generally not disclosed. The new AMD CPU will use the Zen4 core which is reportedly on schedule for launch in 2021. The new CPU-GPU pairing (A-plus-A in AMD parlance) will leverage AMD’s Infinity fabric 3.0 to deliver memory coherency. The detailed node structure and number of nodes for El Capitan were not discussed in the pre-briefing but the official press release characterized the architecture as, “using accelerator-centric compute blades (in a 4:1 GPU to CPU ratio, connected by the 3rd Gen AMD Infinity Architecture for high-bandwidth, low latency connections) to increase performance for data-intensive AI, machine learning and analytics needs by offloading processing from the CPU to the GPU.”

As is the case generally in heterogeneous architectures, accelerators handle most of the work and require efficient IO. Norrod said, “We have next generation memory and IO subsystems that can provide non-blocking access to memory, non-blocking access to IO, and ensure that the full power of the Zen4 CPU engine and the Radeon Instinct GPU engines.”

He said the new GPU is optimized for high performance computing and machine intelligence applications. “It has extensive mix precision operations to optimize that deep learning performance, as well as [the ability] to provide peak single and dual precision performance with more traditional HPC applications. It does embody a next generation of high bandwidth memory (HBM) memory on package to provide the memory bandwidth and capacity that’s so critical to again feed the beast (GPU).”

While many data analytic workloads look quite different from high performance simulation, Scott said, “It turns out AI is one of the workloads that shares a lot in common with high performance simulation. Typically, the granularity or the precision that you use for the computations is quite a bit different. Most of AI is done at 16- or, or 32-bit precision, whereas, most of the scientific simulation is done at 64-bit precision. But modern processors like the AMD GPUs can take their function units and run them either in 64-bit mode or in 16-bit mode or 32-bit mode depending upon the particular computation. [To do that] you need a strong interconnect and need very high memory bandwidth which it shares in common with scientific workloads.

“We find the combination of the CPU and GPU with flexible precision, married with very high memory bandwidth and interconnect bandwidth and storage bandwidth to be well suited for both simulation and AI workloads and we can use all the compute nodes in the system to bring to bear to either those workloads,” Scott said.

Interestingly, AI is not currently a top priority at LLNL.

De Supinski said, “We’re doing a lot of research and development at Livermore exploring how we can bring [AI] to bear our simulations. Whereas we need a certain accuracy, deep learning models are probabilistic and so you can often be good enough with lower precision operations whereas we have to be able to understand where the errors are and where they are becoming larger because of the reduced precision and then be able to bring some mechanism in to increase precision and accuracy required.”

At the pre-briefing, a question was asked about El Capitan’s ability to use non-GPU accelerators. Scott said while GPUs are currently the AI accelerator of choice, many users are looking at alternatives and that El Capitan’s system architecture is “designed to accommodate that kind of heterogeneous mix.”

De Supinski noted LLNL is using an unclassified system, Lassen, a sister machine to the classified Sierra system, to learn more about emerging AI accelerators. “We’re actively exploring ways of adding purpose-built machine learning accelerators to that system. I would anticipate that the mechanism by which we’re doing that is available entirely in El Capitan; that is we can add additional nodes to the system that are designed specifically for that purpose. We will see how things go with our exploratory studies on Lassen. If they go well, we will be very likely to engage HPE in helping us figure out how we can exploit that.”

AMD, HPE and LLNL are collaborating on software tools for El Capitan. Part of the plan is to leverage AMD’s ROCm framework to take advantage of  “coherent acceleration in the OpenMP environment as well as other environments” according to Norrod.

Scott said, “As part of this procurement, the Department of Energy has provided additional funds beyond the purchase of the machine to fund non-recurring engineering efforts and one major piece of that is to work closely with AMD on enhancing the programming environment for their new CPU-GPU architecture.” Work is ongoing by all three partners to take the critical applications and workloads forward and optimize them to get the best performance in the machine when El Capitan is delivered.

De Supinski emphasized, “This is a collaborative process particularly for the software. Some of the software for the system is being developed at Lawrence Livermore in addition to the applications. For instance, we very much expect Spack, which is an open source management package [to able to run] on the new system.”

One interesting feature which was not discussed in the briefing but was mentioned in the official announcement is El Capitan’s planned use of optical data transmission.

According to the release, “HPE is expanding its partnership with LLNL to actively explore HPE optics technologies, a computing solution that uses light to transmit data, to feature in the DOE’s El Capitan. HPE’s optics technologies stem from R&D efforts related to PathForward, a program backed by U.S. DOE’s Exascale Computing Project. HPE developed and demonstrated breakthrough optics prototypes that integrate electrical-to-optical interfaces to enable broad use in future classes of system interconnects. Together, HPE and LLNL are exploring ways to integrate these optics technologies with HPE’s Cray Slingshot for DOE’s El Capitan to transmit more data, more efficiently. This approach aims to improve power efficiency, reliability and ability to cost-effectively increase global system bandwidth.”

Optical data transmission is a hotbed of research with many companies aggressively seeking practical implementation.

El Capitan will become NNSA’s fastest computer and greatly enhance NNSA’s ability to run 3D simulations quickly instead of 2D simulation. LLNL is managing the new system for the NNSA and has developed emerging techniques that allow researchers to create faster, more accurate models for primary missions across stockpile modernization and inertial confinement fusion (ICF), a key aspect of stockpile stewardship.

Link to the official announcement: https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This