Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

By John Russell

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve the National Nuclear Security Administration (NNSA), will use AMD’s next-gen ‘Genoa’ Epyc CPUs and Radeon GPUs and deliver 2 exaflops (peak double-precision) performance, a 30 percent increase over the original spec. The new system, expected to be put into service in 2023, will be 10x faster than Summit, the fastest publicly-ranked supercomputer in the world today (Top500, November 2019).

The choice of AMD processor technology had not been made when the Department of Energy first announced the ~$600 million El Capitan procurement last August. Cray, now part of HPE, was announced as the prime contractor as was selection of its Shasta architecture. More detail on the CPU/GPU selections along with a few other system elements were presented in a media pre-briefing this week given by Bronis de Supinski, CTO, LLNL, Steve Scott, SVP, senior fellow, and CTO, HPE, and Forrest Norrod, SVP and GM, datacenter and embedded systems group, AMD.

HPE, through Cray, has been the big winner so far in the U.S. Exascale sweepstakes, obtaining contracts for all three systems – Aurora, with an Intel CPU/GPU pair; Frontier, with another AMD CPU/GPU pair, and El Capitan, which we now know will also feature AMD processors and AMD accelerators. After re-entering the HPC server market with its Epyc line of CPUs in 2017, AMD at first treaded lightly in pairing Epyc with Radeon GPUs in high-end servers. That clearly has changed.

Steve Scott, HPE/Cray

Talking about the delayed processor selections for El Capitan, Scott said, “The strategy that they’ve (DoE/LLNL) used – and increasingly others are using it as well – is to choose the system architecture, start getting that in place, and then make the processor choice as late as possible in the process. By doing that you can you get better visibility. Your headlights are illuminating farther in the future. The processor roadmaps have continued to improve and by making that decision later you tend to get a better result in the end, and that’s exactly what happened here.”

He declined to specify the process technology for the new processors but there’s been speculation Genoa will be fabbed on a 5nm process. We may know more soon, “We’ll be unpacking more the details in those parts as time goes by,” said AMD’s Norrod, “Our next disclosure on Genoa will, quite frankly…we’ll say a little bit about that at our financial analyst day which is this Thursday.” That’s tomorrow.

El Capitan’s primary mission is within NNSA’s advanced simulation and computing program, which uses simulations to certify the country’s nuclear stockpile is safe, secure and reliable. “To provide that certification we require complex simulations and as the nuclear stockpile ages, the complexity of the simulations only increases and need to be able to use larger and larger systems,” said de Supinski.

El Capitan will leverage HPE’s Shasta architecture which is at the core of the most recent refresh of the HPE/Cray advanced scale product line. Other core components include a new software stack, new Slingshot interconnect technology, and new storage system.

“[The] new software stack that provides a much more dynamic cloud like environment for hybrid workflows,” said Scott. “It has open documented APIs between the software components. It has a management system that’s built with redundant microservices and managed as a Kubernetes cluster, and has robust container support to allow users to take any workload that runs anyplace and run under this system as well.” A systems monitoring framework will run underneath the stack to optimize performance and help predict failures.”

Calling it a future-proof design, Scott said “We’ve designed it to accommodate a wide diversity of processors, different amounts of power, different types of processing, different physical sizes of the processor and memory system. And we’ve given it the power and the cooling headroom to handle processors that are headed again in the years ahead up to the kilowatt power levels.”

El Capitan will be liquid cooled and have an energy budget between 30-to-40 megawatts with expectations it will end up closer to 30MW than 40MW according to Scott. Slingshot and high performance Ethernet comprise the planned system interconnect. The planned storage system is HPE’s new ClusterStor E1000, which Scott said is, “a highly flexible tiered storage system using flash and hard drive partitions That allows you to individually optimize for performance as well as capacity and then does intelligent tiering of data between the partitions and this attaches directly to the slingshot interconnect, which helps take out cost and complexity and latency.”

Shasta Compute Blade

Specific performance specs were generally not disclosed. The new AMD CPU will use the Zen4 core which is reportedly on schedule for launch in 2021. The new CPU-GPU pairing (A-plus-A in AMD parlance) will leverage AMD’s Infinity fabric 3.0 to deliver memory coherency. The detailed node structure and number of nodes for El Capitan were not discussed in the pre-briefing but the official press release characterized the architecture as, “using accelerator-centric compute blades (in a 4:1 GPU to CPU ratio, connected by the 3rd Gen AMD Infinity Architecture for high-bandwidth, low latency connections) to increase performance for data-intensive AI, machine learning and analytics needs by offloading processing from the CPU to the GPU.”

As is the case generally in heterogeneous architectures, accelerators handle most of the work and require efficient IO. Norrod said, “We have next generation memory and IO subsystems that can provide non-blocking access to memory, non-blocking access to IO, and ensure that the full power of the Zen4 CPU engine and the Radeon Instinct GPU engines.”

He said the new GPU is optimized for high performance computing and machine intelligence applications. “It has extensive mix precision operations to optimize that deep learning performance, as well as [the ability] to provide peak single and dual precision performance with more traditional HPC applications. It does embody a next generation of high bandwidth memory (HBM) memory on package to provide the memory bandwidth and capacity that’s so critical to again feed the beast (GPU).”

While many data analytic workloads look quite different from high performance simulation, Scott said, “It turns out AI is one of the workloads that shares a lot in common with high performance simulation. Typically, the granularity or the precision that you use for the computations is quite a bit different. Most of AI is done at 16- or, or 32-bit precision, whereas, most of the scientific simulation is done at 64-bit precision. But modern processors like the AMD GPUs can take their function units and run them either in 64-bit mode or in 16-bit mode or 32-bit mode depending upon the particular computation. [To do that] you need a strong interconnect and need very high memory bandwidth which it shares in common with scientific workloads.

“We find the combination of the CPU and GPU with flexible precision, married with very high memory bandwidth and interconnect bandwidth and storage bandwidth to be well suited for both simulation and AI workloads and we can use all the compute nodes in the system to bring to bear to either those workloads,” Scott said.

Interestingly, AI is not currently a top priority at LLNL.

De Supinski said, “We’re doing a lot of research and development at Livermore exploring how we can bring [AI] to bear our simulations. Whereas we need a certain accuracy, deep learning models are probabilistic and so you can often be good enough with lower precision operations whereas we have to be able to understand where the errors are and where they are becoming larger because of the reduced precision and then be able to bring some mechanism in to increase precision and accuracy required.”

At the pre-briefing, a question was asked about El Capitan’s ability to use non-GPU accelerators. Scott said while GPUs are currently the AI accelerator of choice, many users are looking at alternatives and that El Capitan’s system architecture is “designed to accommodate that kind of heterogeneous mix.”

De Supinski noted LLNL is using an unclassified system, Lassen, a sister machine to the classified Sierra system, to learn more about emerging AI accelerators. “We’re actively exploring ways of adding purpose-built machine learning accelerators to that system. I would anticipate that the mechanism by which we’re doing that is available entirely in El Capitan; that is we can add additional nodes to the system that are designed specifically for that purpose. We will see how things go with our exploratory studies on Lassen. If they go well, we will be very likely to engage HPE in helping us figure out how we can exploit that.”

AMD, HPE and LLNL are collaborating on software tools for El Capitan. Part of the plan is to leverage AMD’s ROCm framework to take advantage of  “coherent acceleration in the OpenMP environment as well as other environments” according to Norrod.

Scott said, “As part of this procurement, the Department of Energy has provided additional funds beyond the purchase of the machine to fund non-recurring engineering efforts and one major piece of that is to work closely with AMD on enhancing the programming environment for their new CPU-GPU architecture.” Work is ongoing by all three partners to take the critical applications and workloads forward and optimize them to get the best performance in the machine when El Capitan is delivered.

De Supinski emphasized, “This is a collaborative process particularly for the software. Some of the software for the system is being developed at Lawrence Livermore in addition to the applications. For instance, we very much expect Spack, which is an open source management package [to able to run] on the new system.”

One interesting feature which was not discussed in the briefing but was mentioned in the official announcement is El Capitan’s planned use of optical data transmission.

According to the release, “HPE is expanding its partnership with LLNL to actively explore HPE optics technologies, a computing solution that uses light to transmit data, to feature in the DOE’s El Capitan. HPE’s optics technologies stem from R&D efforts related to PathForward, a program backed by U.S. DOE’s Exascale Computing Project. HPE developed and demonstrated breakthrough optics prototypes that integrate electrical-to-optical interfaces to enable broad use in future classes of system interconnects. Together, HPE and LLNL are exploring ways to integrate these optics technologies with HPE’s Cray Slingshot for DOE’s El Capitan to transmit more data, more efficiently. This approach aims to improve power efficiency, reliability and ability to cost-effectively increase global system bandwidth.”

Optical data transmission is a hotbed of research with many companies aggressively seeking practical implementation.

El Capitan will become NNSA’s fastest computer and greatly enhance NNSA’s ability to run 3D simulations quickly instead of 2D simulation. LLNL is managing the new system for the NNSA and has developed emerging techniques that allow researchers to create faster, more accurate models for primary missions across stockpile modernization and inertial confinement fusion (ICF), a key aspect of stockpile stewardship.

Link to the official announcement: https://www.llnl.gov/news/llnl-and-hpe-partner-amd-el-capitan-projected-worlds-fastest-supercomputer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire