LLNL Highlights Magma’s Role in NNSA’s Computing Arsenal

By Oliver Peckham

March 11, 2020

Lawrence Livermore National Laboratory (LLNL) is one of several national labs working with the National Nuclear Security Administration (NNSA), which manages the military applications of nuclear science – that is, the United States’ nuclear weapons stockpile. The NNSA doesn’t actually conduct weapons tests, though: it simulates them. To do this, the NNSA – and its partner labs – use in-house HPC systems. This week, LLNL highlighted one of the latest additions to its computing arsenal: Magma.

The NNSA’s core mission might sound straightforward, but simulating nuclear weapons is a deeply multidimensional task. “The high-performance computing aspects of that mission involve the development of predictive physics-based models,” explained Matt Leininger, deputy for advanced technology projects at LLNL, in a webinar. “Those […] are models for such areas as materials science, molecular dynamics, particle transport, hydrodynamics, mathematical solvers and other areas.” 

LLNL researchers run multi-physics applications – applications incorporating, for instance, hydrodynamics, particle transport and complex geometries – at first, then run individual science-based applications to drill down into the uncertainties produced by the multi-physics models. Using those results, researchers then revisit the multi-physics applications, iterating the process until they achieve what Leininger calls “predictive science capability.” Many of those models run along various spectra of resolution, dimensionality, timescales and more, adding up to produce an enormous appetite for computing capacity.

To sate this appetite, LLNL calls on the Commodity Technology Systems contract (CTS-1), an NNSA grant awarded to LLNL and its two sister laboratories, Sandia National Laboratories and Los Alamos National Laboratory. Magma, which was shipped in November 2019, is the latest procurement under the CTS-1 umbrella following an award in 2016.

The specs

Magma. Image courtesy of LLNL.

Magma is a Penguin Computing “Relion” system comprised of 752 nodes with Intel Xeon Platinum 9242 (Cascade Lake-AP) processors. The cluster has 293 terabytes of memory, liquid cooling provided by CoolIT Systems and an Intel Omni-Path interconnect. Its 3.24 Linpack petaflops placed it 69th on the latest Top500 list of the world’s most powerful supercomputers out of a theoretical peak of 5.31 petaflops. On a per-node basis, Leininger told HPCwire, the Cascade Lake processors delivered “about three to three and a half” times the performance compared to Broadwell processors deployed earlier in the CTS program.

Magma has no distinct storage capacity, Leininger said, as it is connected into several different Lustre file systems, but he says that it has access to “many, many petabytes” of storage. In terms of its footprint, Leininger explained that LLNL clusters are designed in “scalable units” that act like LEGO bricks, allowing researchers to scale a system from as few as 20 nodes to several thousand nodes. Magma is about four scalable units, making it physically around the size of “half a tennis court.”

What Magma brings to the table

Leininger was especially excited about a few new elements of Magma. The interconnect, he said, was “particularly critical.” “You can’t just solve [the models] on a single server,” he explained. “You really have to break up the problem and distribute it across thousands of servers and then use that high performance interconnect to tie the pieces back together again.” Thanks to that high performance interconnect, he said, tasks that used to be impossible on a single server now take a couple of days. Leininger also emphasized the memory bandwidth per node (which he called “tremendous”) noting that typical workloads were even more intensive on memory bandwidth than on the network. 

Crucially, and unlike much of LLNL’s Broadwell-based systems, Magma’s uses liquid cooling – specifically, liquid coolant focused on the CPU and memory modules, to which Leininger credits much of Magma’s high density. “When you have a gigantic machine like Sierra that’s liquid-cooled, and then you put a big cluster in the corner that’s air-cooled, it’s challenging facilities-wise to make sure all that cold air is going in that right spot,” Leininger said in an earlier interview with HPCwire. “And it’s often a very human-intensive thing to optimize for all that, and it ends up just being easier and much more cost-effective to just move to liquid cooling on these solutions. So we knew we wanted to do that as well.”

Leininger also stressed that memory errors are a large portion of overall computing errors at LLNL and suggested that the direct liquid cooling may help. “We’re looking forward to reducing the operating temperature of the DIMMs and hopefully therefore reducing the overall number of memory errors we see over the system lifetime,” Leininger said, adding that the cooling system was designed for easy serviceability.

How Magma fits into the NNSA computing landscape

Magma is currently in the final stages of installation at LLNL, after which it will undergo testing and enter full production within the next month. Magma exists alongside several CTS-1 comrades (also supplied by Penguin Computing), including Corona (another LLNL system) and Attaway, which is housed at Sandia. Unlike Magma, Corona is the first of the “A+A” systems: AMD CPUs and AMD GPUs (specifically, AMD Naples CPUs and a 50-50 mix of MI25 and MI60 GPUs). This A+A structure makes Corona an early precursor to the forthcoming exascale Frontier system at Oak Ridge National Laboratory and the forthcoming El Capitan system at LLNL itself. While Magma serves problems more related to materials science, Corona’s GPUs make it more suitable for tasks such as machine learning and AI applications, Leininger explained to HPCwire. Attaway, meanwhile, uses Intel Skylake processors and placed 94th in the most recent Top500.

Leininger claims that LLNL has no plans to sunset any of its other systems once Magma reaches full production, saying that “all the CTS-1 systems we’ve procured over the last four years now, including Magma, will continue to deliver HPC cycles to our users over the next several years.” In fact, he explained, those systems remain in “very heavy use” and LLNL is facing demand beyond even its new capabilities.

To that end, LLNL is ready to move beyond CTS-1. “We are preparing for our next round of CTS procurements that’ll occur starting in late 2021,” Leininger said, “and that’ll be under the second round of the CTS procurements, called CTS-2.” Leininger said an RFP would be issued this summer and a contract would be awarded late in the calendar year as part of a push to deliver systems to NNSA labs from the second half of 2021 through 2024. Of course, he emphasized, there are still a few more systems to deliver before that point.

In general, Leininger said, the CTS-1 systems are “everyday workhorses,” intended to take the load off of the Advanced Technology System (ATS) supercomputers. “Commodity-based systems take on the bulk of day-to-day computing, leaving the larger advanced technology capability systems available for only the most demanding problems across the Tri-Lab community,” said Mark Anderson, director of the NNSA’s Advanced Simulation and Computing Program. The current ATS flagship is the Trinity supercomputer at Los Alamos, which is scheduled to reach end-of-life in 2021. At that point, Trinity will be replaced by a new ATS system, called Crossroads. 

Tiffany Trader contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers


Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow