LLNL Highlights Magma’s Role in NNSA’s Computing Arsenal

By Oliver Peckham

March 11, 2020

Lawrence Livermore National Laboratory (LLNL) is one of several national labs working with the National Nuclear Security Administration (NNSA), which manages the military applications of nuclear science – that is, the United States’ nuclear weapons stockpile. The NNSA doesn’t actually conduct weapons tests, though: it simulates them. To do this, the NNSA – and its partner labs – use in-house HPC systems. This week, LLNL highlighted one of the latest additions to its computing arsenal: Magma.

The NNSA’s core mission might sound straightforward, but simulating nuclear weapons is a deeply multidimensional task. “The high-performance computing aspects of that mission involve the development of predictive physics-based models,” explained Matt Leininger, deputy for advanced technology projects at LLNL, in a webinar. “Those […] are models for such areas as materials science, molecular dynamics, particle transport, hydrodynamics, mathematical solvers and other areas.” 

LLNL researchers run multi-physics applications – applications incorporating, for instance, hydrodynamics, particle transport and complex geometries – at first, then run individual science-based applications to drill down into the uncertainties produced by the multi-physics models. Using those results, researchers then revisit the multi-physics applications, iterating the process until they achieve what Leininger calls “predictive science capability.” Many of those models run along various spectra of resolution, dimensionality, timescales and more, adding up to produce an enormous appetite for computing capacity.

To sate this appetite, LLNL calls on the Commodity Technology Systems contract (CTS-1), an NNSA grant awarded to LLNL and its two sister laboratories, Sandia National Laboratories and Los Alamos National Laboratory. Magma, which was shipped in November 2019, is the latest procurement under the CTS-1 umbrella following an award in 2016.

The specs

Magma. Image courtesy of LLNL.

Magma is a Penguin Computing “Relion” system comprised of 752 nodes with Intel Xeon Platinum 9242 (Cascade Lake-AP) processors. The cluster has 293 terabytes of memory, liquid cooling provided by CoolIT Systems and an Intel Omni-Path interconnect. Its 3.24 Linpack petaflops placed it 69th on the latest Top500 list of the world’s most powerful supercomputers out of a theoretical peak of 5.31 petaflops. On a per-node basis, Leininger told HPCwire, the Cascade Lake processors delivered “about three to three and a half” times the performance compared to Broadwell processors deployed earlier in the CTS program.

Magma has no distinct storage capacity, Leininger said, as it is connected into several different Lustre file systems, but he says that it has access to “many, many petabytes” of storage. In terms of its footprint, Leininger explained that LLNL clusters are designed in “scalable units” that act like LEGO bricks, allowing researchers to scale a system from as few as 20 nodes to several thousand nodes. Magma is about four scalable units, making it physically around the size of “half a tennis court.”

What Magma brings to the table

Leininger was especially excited about a few new elements of Magma. The interconnect, he said, was “particularly critical.” “You can’t just solve [the models] on a single server,” he explained. “You really have to break up the problem and distribute it across thousands of servers and then use that high performance interconnect to tie the pieces back together again.” Thanks to that high performance interconnect, he said, tasks that used to be impossible on a single server now take a couple of days. Leininger also emphasized the memory bandwidth per node (which he called “tremendous”) noting that typical workloads were even more intensive on memory bandwidth than on the network. 

Crucially, and unlike much of LLNL’s Broadwell-based systems, Magma’s uses liquid cooling – specifically, liquid coolant focused on the CPU and memory modules, to which Leininger credits much of Magma’s high density. “When you have a gigantic machine like Sierra that’s liquid-cooled, and then you put a big cluster in the corner that’s air-cooled, it’s challenging facilities-wise to make sure all that cold air is going in that right spot,” Leininger said in an earlier interview with HPCwire. “And it’s often a very human-intensive thing to optimize for all that, and it ends up just being easier and much more cost-effective to just move to liquid cooling on these solutions. So we knew we wanted to do that as well.”

Leininger also stressed that memory errors are a large portion of overall computing errors at LLNL and suggested that the direct liquid cooling may help. “We’re looking forward to reducing the operating temperature of the DIMMs and hopefully therefore reducing the overall number of memory errors we see over the system lifetime,” Leininger said, adding that the cooling system was designed for easy serviceability.

How Magma fits into the NNSA computing landscape

Magma is currently in the final stages of installation at LLNL, after which it will undergo testing and enter full production within the next month. Magma exists alongside several CTS-1 comrades (also supplied by Penguin Computing), including Corona (another LLNL system) and Attaway, which is housed at Sandia. Unlike Magma, Corona is the first of the “A+A” systems: AMD CPUs and AMD GPUs (specifically, AMD Naples CPUs and a 50-50 mix of MI25 and MI60 GPUs). This A+A structure makes Corona an early precursor to the forthcoming exascale Frontier system at Oak Ridge National Laboratory and the forthcoming El Capitan system at LLNL itself. While Magma serves problems more related to materials science, Corona’s GPUs make it more suitable for tasks such as machine learning and AI applications, Leininger explained to HPCwire. Attaway, meanwhile, uses Intel Skylake processors and placed 94th in the most recent Top500.

Leininger claims that LLNL has no plans to sunset any of its other systems once Magma reaches full production, saying that “all the CTS-1 systems we’ve procured over the last four years now, including Magma, will continue to deliver HPC cycles to our users over the next several years.” In fact, he explained, those systems remain in “very heavy use” and LLNL is facing demand beyond even its new capabilities.

To that end, LLNL is ready to move beyond CTS-1. “We are preparing for our next round of CTS procurements that’ll occur starting in late 2021,” Leininger said, “and that’ll be under the second round of the CTS procurements, called CTS-2.” Leininger said an RFP would be issued this summer and a contract would be awarded late in the calendar year as part of a push to deliver systems to NNSA labs from the second half of 2021 through 2024. Of course, he emphasized, there are still a few more systems to deliver before that point.

In general, Leininger said, the CTS-1 systems are “everyday workhorses,” intended to take the load off of the Advanced Technology System (ATS) supercomputers. “Commodity-based systems take on the bulk of day-to-day computing, leaving the larger advanced technology capability systems available for only the most demanding problems across the Tri-Lab community,” said Mark Anderson, director of the NNSA’s Advanced Simulation and Computing Program. The current ATS flagship is the Trinity supercomputer at Los Alamos, which is scheduled to reach end-of-life in 2021. At that point, Trinity will be replaced by a new ATS system, called Crossroads. 

Tiffany Trader contributed to this report.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This