Steve Scott Lays Out HPE-Cray Blended Product Roadmap

By Tiffany Trader

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE’s new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray’s eighth-gen networking technology, Slingshot.

HPE announced its intention to acquire Cray last May (2019) for $1.3 billion. At the time, Cray’s Shasta architecture had been selected for two U.S. exascale contracts — Aurora at Argonne and Frontier at Oak Ridge — and it would soon secure the third and final outstanding Department of Energy exascale contract, El Capitan at Livermore. (Note, as we reported last August, the DOE is not seeking a second exascale system for Argonne under the CORAL-2 procurement project.)

With excitement building around its exascale wins, Cray’s profile has only grown stronger as the company was brought into HPE, bucking the trend that we see in many M&As. As Scott said at the Rice event, “Cray went away as an entity, but the Cray systems and Cray brand will definitely persist.”

The companies were fully merged by Jan. 1, 2020.

The way Scott tells it, the transition went smoothly. “The transaction closed in September of 2019, and it literally took one month for organizations to be fully combined. We’re not running as kind of a little subsidiary off the side,” he said.

Pete Ungaro (SVP & GM, HPC & AI at HPE, formerly Cray CEO) runs the combined HPC and AI organization inside HPE. The group has also pulled in additional HPE units: Mission Critical (includes Superdome Flex), the Edge line, and the Moonshot division all report to Ungaro. “Within one month, we had a combined blended leadership team, and we have one organization working as one team,” said Scott.

Consolidation of the product roadmaps was completed inside of two months, in time for SC19, according to Scott. “Within the first month and a half, we had pretty much fully blended our storage and compute roadmaps. It was relatively easy to do because they were somewhat complementary. There were some things that we were doing in both companies, and we chose one,” he said.

Liquid-cooled infrastructure was one of the overlapping technologies, and that choice fell to Cray’s design. Some of the air-cooled commodity cabinets that Cray was developing will be replaced by the HPE Apollo. The storage roadmaps were merged together under ClusterStor.

The HPE Apollo line, comprised of standard 19″ rack systems, has been brought into the Shasta fold, along with the Cray-developed dense, scale-optimized cabinets, now known as Olympus.

“[Pre-Shasta] from a hardware perspective on the XC systems, you had one liquid-cooled cabinet and then if you wanted to have I/O nodes, you had to have them designed into this customized cabinet,” said Scott. “And if you wanted other stuff that didn’t fit in the customized cabinet, you basically had to buy a separate system and hook it up to the side through the I/O subsystem and share it. That all goes away with Shasta. There’s two physical infrastructures: the Apollo infrastructure coming from HPE, and the Olympus infrastructure, which is the dense-liquid cooled infrastructure. You can kind of get anything under the sun to put into the Apollo infrastructure. But then we do a smaller number of custom blades, high performance blades, that are really intended to optimize for the key computational technologies that go into the Olympus infrastructure and that has very high density and direct warm water cooling.”

Of the combined Shasta lineup, Scott said, “It’s the same interconnect that spans them and it’s the same software environment. It’s literally just a physical infrastructure choice. It makes no difference in terms of the look and feel of the system, in terms of the performance of the software and the user experience–it’s literally just a packaging choice.”

In a follow-up email exchange, Scott clarified that HPE still offers the CS line, the commodity Cray line with Appro roots. Recall that the Fujitsu-Cray A64FX boards are supported by the CS500 architecture, a decision that was driven by time-to-market. Long term, HPE expects the CS line to be supplanted by the Apollo line, which will also provide the expanded physical infrastructure for the Shasta supercomputers. Further, HPE is still selling Cray XC systems even as it introduces the new Shasta systems.

With the Olympus architecture, Scott notes every cabinet has a stack of four chassis on the left and another four chassis on the right. Each chassis has eight compute blades that plug into the front, up to 64 compute blades into a single cabinet. And then from the back, you can plug in from one to eight network cards per chassis, which offers configurability in terms of that amount of network bandwidth.

There is direct liquid cooling to all the components, including the optical transceivers for the active optical cables, the memories, and the processors, etc. One cabinet supports up to 512 high wattage GPUs plus 128 CPUs and up to 64 network switches. Currently, Olympus cabinets are shipping with up to 250 kilowatts, and soon that will go to 300 kilowatts, and then 400 kilowatts in a single cabinet, said Scott.

In discussing the reasons for moving to Shasta, Scott emphasized flexibility and upgradability. “The XC system that we’ve been shipping for a number of years is great in lots of ways but it’s not flexible; you can have any number of nodes you want for your blade as long as it’s four; you can have any amount of network bandwidth per node as long as it’s one PCI Gen3 x16 and the node can be any size you want, as long as it’s that, right? It’s a very inflexible design. And we hit limits there especially as we started looking at hotter and hotter processors, and we just couldn’t accommodate in that system design. So Shasta is designed to have a wide diversity of processors, all shapes and sizes, and particularly, of increasingly higher and higher wattages.”

Cray’s first wins with Shasta reflect this diversity at the node. There’s Aurora at Argonne (two Intel Xeon CPUs and six of the Xe GPUs, connected by Compute eXpress Link [CXL]); Perlmutter at NERSC (two AMD Epyc Milan CPUs and four Nvidia Volta-Next GPUs connected by PCIe Gen4); Frontier at Oak Ridge (one custom AMD Epyc CPU plus four Radeon GPUs connected by an enhanced Infinity fabric) and El Capitan at Livermore (AMD’s ‘Genoa’ Zen4 Epyc CPU plus Radeon Instinct GPUs in a one-to-four ratio, connected by AMD’s 3rd Gen AMD Infinity fabric).

While all of these are heterogeneous systems targeting “big flops,” Scott also discussed the CPU-based compute blades going into NERSC Perlmutter, encompassing four dual-socket AMD Epyc “Milan” nodes.

Cray also supports Marvell ThunderX2 Arm processors in its XC50 architecture, as in the recent refresh win (Isambard2) for GW4/UK Met, and supports the Fujitsu A64FX chips in its CS500 system, as already mentioned.

Scott, who has led the design of several generations of supercomputing interconnects, made sure to save time in his presentation to discuss Cray’s new Slingshot network, a pillar of the Shasta architecture and the interconnect on the three DOE exascale systems that are underway. Scott highlighted Slingshot’s pivot to Ethernet, its feeds and speeds, quality of service and congestion control features.

“We have decided to stop building proprietary networks and instead adopt Ethernet. The world is going to Ethernet, so we decided to stop fighting them and instead join them, but instead of just using a commodity Ethernet, we are redesigning Ethernet and bringing HPC to Ethernet. So we have standard Ethernet connectivity at the edges; we can talk to standard NICs; you can talk to other datacenter switches, etc. But inside it’s…a state of the art HPC fabric,” said Scott.

“Our Rosetta switch is 64 ports times 200 gigabits per second,” Scott continued. “This allows you to build really big systems–like those exascale systems–with a network diameter of just three switch to switch hops. The diameter is three whether it’s two cabinets or 20 cabinets or 200 cabinets, which is the neat thing about this Dragonfly topology and having high-radix switches…. It also turns out that we can build a system the size of Frontier, a multi-exaflop system where 90 percent of the cables in the system are short, cheap, reliable electrical copper cables, and only 10 percent of them have to be optics.”

“[With Shasta], the way that the network blades and the compute blades are put in the system also gives you the flexibility to put a second generation network, and a third generation network. We will absolutely be going to optics everywhere within a couple of generations without having to worry about redesigning the electrical backplane and that sort of thing. So it gives us a lot of flexibility on the interconnect side as well,” he said.

Watch Scott’s full presentation from the 2020 Rice Oil and Gas conference below for additional details on the Slingshot network, the E1000 ClusterStor system, and the Cray software environment.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire