Marvell Talks up ThunderX3 and Arm Server Roadmap

By John Russell

March 17, 2020

Marvell yesterday released more details about ThunderX3, its next-gen 7nm Arm-based microprocessor, codenamed “Triton,” which it says is now sampling and will be broadly available later in 2020. The new chip will feature up to 96 Arm v8.3+ cores and support 4 threads per core thus delivering up 384 threads per socket. While many details of ThunderX3’s architecture were not disclosed, Marvell says more information will be forthcoming over the next few months. Marvell also took the opportunity to issue a barrage of performance advantage claims over both Intel and AMD CPUs.

The recent rise of Arm CPUs in servers targeting HPC and the cloud is noteworthy. Arm has long been a force in embedded applications, leveraging its low power consumption attributes. Now, advancing chip features, available silicon, an emerging accelerator strategy, and a significantly expanded ecosystem are invigorating Arm’s server aspirations.

Gopal Hegde, Marvell

Marvell, through its acquisition of Cavium (announced 2016, completed 2018) is finally starting to enjoy growing success in servers with the ThunderX CPU line. ThunderX2, for example, is being used in high-profile supercomputing projects at Sandia Laboratory (Astra), Los Alamos National Laboratory, GW4 (the Met Office), and France’s CEA. In the cloud, Microsoft Azure now uses ThunderX2-based clusters for internal purposes and Marvell says it has deals with 20 other hyperscalers.

Of course Marvell isn’t alone. Fujitsu’s A64FX Arm CPU will power Japan’s “Fugaku” supercomputer to be deployed at RIKEN in 2021, and in November Cray (now HPE) announced a collaboration with Fujitsu to bring out A64FX-based systems.

All things considered, the Arm camp –  once thought of as a long shot in mainstream servers let alone high-end HPC – is making steady headway into server markets. In a pre-briefing on the forthcoming ThunderX3 with HPCwire, Gopal Hegde vice president and GM, server processors, Marvell, argued that now that the heavy lifting is done, Marvell’s Arm’s server chip design is inherently better than x86 architecture because it doesn’t need to support legacy architecture or so many diverse device types.

“Intel designed its cores for use in [systems] from laptops and desktops all the way to servers. It’s not optimized for servers. We have no x86 legacy, like 32-bit support and things like that,” said Hegde. “We are able to optimize our code, and our core area is significantly smaller [as a result]. Just to give you an idea, in the previous generation, if you look at ThunderX2, compared to AMD or Skylake, for the same process node technology [we get] roughly 20% to 25% smaller die area. That translates into lower power. When we move to 7nm with ThunderX3, our core compared to AMD Rome’s 7nm is roughly 30% smaller.”

The slides below summarize ThunderX3’s specs, Marvell’s general pitch for ThunderX in advanced computing, and its processor portfolio:

 

It may be useful to briefly describe Marvell. Founded in 1995, FY20 revenue was $2.7 billion. The company has roughly 5000 employees. Its roots are in storage technology, but the product portfolio and markets served have expanded over the years. Marvell now has three main businesses – processors, networking, and storage, and it bills itself as the largest supplier of Arm server chips.

“Cavium was in the processor business for almost 15 years. Marvell has been shipping Armada (low power SoC) for a similar amount of time. So together, we have shipped over hundreds of millions of CPUs over the years. These are multicore CPUs ranging from two cores all the way up to 48 cores are now, even higher (96-core ThunderX3) soon,” said Hegde

“Octeon and Octeon Fusion are products used in wireless 5G infrastructure. We announced design wins with Samsung and Nokia about a week ago. Octeon processors are [also] very widely used in the embedded market and constitute a pretty significant part of the 2.7 billion in revenue that we did last year. Today we exclusively develop Arm-based processor products,” he said.

The server-oriented ThunderX line targets HPC, the cloud, and as Marvell puts it, “Arm native applications at cloud and edge.” Hegde contends that Intel’s struggles with process and resulting low core counts have created an opportunity for making gains in single and multi-threaded performance, while AMD’s multi-die-on-a-chip, or chiplet, approach necessarily introduces latency. ThunderX3, said Hegde, is designed to exploit those.

Given small die area and the lack of legacy x86 overhead, contends Hegde, it is possible to leverage Arm architecture for lower power consumption, lower cost, and added functionality “into the same monolithic die.” This gives ThunderX3, he argues, improved instruction per cycle (IPC) performance, better thermal design power (DTP), and “really good memory latency and memory bandwidth. “If you look at the ThunderXs, from that standpoint, you get the best of both worlds. You don’t have to sacrifice core count like, x86 Intel, and you don’t have to sacrifice memory latency like AMD.”

It’s true ThunderX3 still doesn’t have Arm Scalable Vector Extension (SVE) which Fujitsu’s A64FX has. Hegde said “It is going to be available in a later processor. The challenge is that compilers needed to take advantage of SVP are still under development. So we’re actually pretty happy to be providing systems so that the compiler toolchain can evolve.”

Below are a few workload and performance comparison slides Hegde presented

Until the fairly recently, the state of the Arm ecosystem – tools, supported OSs, adapter cards, etc. – has been a source of concern among would-be Arm users. That does seem to be changing. One prominent example of change is Nvidia’s decision last summer to support Arm as its accelerator strategy emerged and firmed up.

Hegde noted, “When I started in 2014 [with Cavium], we had two partners. Over the last six years, we have built a very broad ecosystem of over 100 partners across commercial, open source, and industry standard partners. A lot of these are driven through contracts and contracts to platforms that are in the ecosystem. Today there are thousands of ThunderX and ThunderX2 platforms in the ecosystem today.

“Not only do we work with several OEMs and ODMs to deliver platforms, but also have full tools and full collaterals. Pretty much all the operating systems are supported on ThunderX today, ranging from, Red Hat, SuSe, Oracle Linux, to Microsoft Windows, VMware, and some of the free community-based operating systems like Centos, FreeBSD, all the way up to middleware. HPC has been a special area of focus for us. And the number of partners in that space has more than doubled over last 12 months, and of course, cloud and now also in the edge computing,” he said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This