Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application management solutions for each cloud provider, adds lots of friction in dynamically allocating, using, and managing those resources.

Lack of a common management and operating model in hybrid cloud environments can cause:

  • Inhomogeneous, fragmented environments create additional complexity for managers, operators, and security.
  • Speed of innovation slows down due to hybrid environments without common management.
  • Cloud resources are hard to change or shutdown when dependent on a cloud provider’s specific services.
  • Workloads can’t be easily migrated back to on-premises environments when bound to specific cloud environment setups, and vice versa.

Kubernetes has become the de-facto standard container orchestrator as pointed out in a previous article. All major companies provide and build solutions on top of a standardized API which is available everywhere. CIOs are now looking into the applicability of Kubernetes for HPC in hybrid-cloud as it offers a common management and operating model for every environment.

Kubernetes: A Common Management and Operating Model for Hybrid Cloud

Kubernetes facilitates the use and administration of countless containers running on fleets of servers. It is the new standard platform for hybrid environments supported by many IT vendors and cloud providers. CIOs can now allocate a fully configured and supported container orchestrator as base for all of their application workloads.

Kubernetes, unlike proprietary infrastructure solutions, provides portability, ease of administration, high availability, integrability, and monitoring capabilities. When managing resources on Kubernetes CIOs are no longer bound to a specific infrastructure. They can offer their users the same set of functionalities, be it on-premises or in any cloud, using the same application stack. Users are not even aware that their applications are running on Kubernetes, nor on which infrastructure they are running: in their own data centers or at a specific cloud provider, like Google, Microsoft, or Amazon.

Reducing complexity in hybrid cloud environments by using a standardized software stack like Kubernetes comes with many advantages: improvements made for one platform can be made automatically available on other platforms; deployment and operational aspects can be simplified; and security audits are easier and rigorously to execute.

Kubernetes and HPC

Kubernetes is the de facto platform for AI and ML already. However, when it comes to traditional HPC, some challenges remain. There is still a set of features built into HPC workload managers not yet available in Kubernetes. We discussed the major differences already previously in our HPCwire Part I article. Major gaps of Kubernetes for HPC currently are: native support for distributed memory jobs, namely MPI applications, and a missing job queueing system compatible with existing HPC applications.

Kubernetes has built-in high availability on many layers. However, for HPC jobs, it is not enough to restart a single container that failed because the whole distributed job itself might have failed already. In this case, automatic rescheduling of the entire distributed memory job is required. This is something Kubernetes doesn’t handle.

Beside these challenges, Kubernetes comes with many benefits for HPC: for example, the environment for the engineer and for the containerized HPC application is always the same, be it on-premises or running in a cloud-based environment; and the capability to quickly change from one infrastructure to another allows the HPC team to align with their company’s cloud roadmap. The freedom to move workloads between infrastructures based on a common API – the Kubernetes API – is what becomes valuable.

Containerized HPC Applications on Kubernetes

Over the past five years, dozens of HPC applications have been containerized, be it commercial, like ANSYS, COMSOL, STAR-CCM+, or open source packages like OpenFOAM and GROMACS, along with HPC cluster schedulers like Univa Grid Engine and Slurm. Thanks to container technology, a constant stream of updates and improvements is provided which can be promptly and seamlessly updated by customers. Additionally, the container images allow users to go back at any time to a previous application version so that they always can reproduce their previous results.

Example HPC Application Cluster Architecture running on Managed Kubernetes.

In the meantime, many container environments have been implemented by using infrastructure and configuration management tools like Terraform and Puppet or by building cloud specific HPC integrations into existing portals. But with the advent of Kubernetes, container environments became easier to maintain and are much more dynamic. Rolling out a cluster, rescaling the worker nodes, using a constant set of preemptible instances, and high availability are driven by controllers which continuously drive the cluster to the desired state. Thus, major HPC gaps of Kubernetes have been closed. This way, today, distributed memory/MPI jobs can be supported in any Kubernetes environment, which provides a built-in HPC workload manager integration running inside HPC containers. That allows traditional HPC applications to run without any changes. Also, GPU and non-GPU enabled applications based on Ansys and COMSOL have been launched successfully, through a high-performance, GPU enabled desktop running inside a pod. Once logged in to the desktop the engineer can start submitting batch jobs or single MPI applications which are distributed across a set of pods allocated on multiple nodes.

Conclusions

Kubernetes not only supports microservice based enterprise applications, but also self-service engineering HPC applications. In summary, as this research has shown, the key advantages of using Kubernetes as a foundation for running containerized engineering applications are:

  • Unified application stack available on virtually any infrastructure
  • True hybrid cloud usage scenarios for engineering workload. For the engineers it is transparent where the application runs, be it on-premises or in the cloud
  • which leads to providing the best performance for running engineering applications by allocating always the newest and fastest machines available in the cloud
  • Building and resizing a self-contained HPC application and compute cluster as self-service for the engineer which is only limited by cloud quotas and budget per time period
  • Robust management stack, supported by many Cloud providers
  • Optimizing costs by only paying for what is used. No idle resources which need to be allocated before they are going to be used.
  • High security through self-contained dedicated compute clusters
  • Minimal operational overhead by self-provisioning and disposable components for which updates are simple destroy and re-create commands
  • Kubernetes based workload is easier to integrate in widely adopted continuous integration and deployment solutions (like Tekton, Concourse, or future versions of Jenkins)

In this research, container-based HPC application environments have been implemented on top of Kubernetes (e.g. on Google GCP and Amazon AWS) and also used as self-service test environments which can be deployed from scratch by HPC application specialists, not operators. It has also been used in CI/CD pipelines to automatically build test environments which run tests against existing container solutions and shut down the infrastructure afterwards. In customer environments, the IT group benefits from an easier to maintain system using a supported, managed Kubernetes which can ramp up, resized and deleted computing resources within minutes.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. In this article and the part-one article published on HPCwire last September, they describe their experiences during the last 12 months using UberCloud HPC containers on Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire