Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application management solutions for each cloud provider, adds lots of friction in dynamically allocating, using, and managing those resources.

Lack of a common management and operating model in hybrid cloud environments can cause:

  • Inhomogeneous, fragmented environments create additional complexity for managers, operators, and security.
  • Speed of innovation slows down due to hybrid environments without common management.
  • Cloud resources are hard to change or shutdown when dependent on a cloud provider’s specific services.
  • Workloads can’t be easily migrated back to on-premises environments when bound to specific cloud environment setups, and vice versa.

Kubernetes has become the de-facto standard container orchestrator as pointed out in a previous article. All major companies provide and build solutions on top of a standardized API which is available everywhere. CIOs are now looking into the applicability of Kubernetes for HPC in hybrid-cloud as it offers a common management and operating model for every environment.

Kubernetes: A Common Management and Operating Model for Hybrid Cloud

Kubernetes facilitates the use and administration of countless containers running on fleets of servers. It is the new standard platform for hybrid environments supported by many IT vendors and cloud providers. CIOs can now allocate a fully configured and supported container orchestrator as base for all of their application workloads.

Kubernetes, unlike proprietary infrastructure solutions, provides portability, ease of administration, high availability, integrability, and monitoring capabilities. When managing resources on Kubernetes CIOs are no longer bound to a specific infrastructure. They can offer their users the same set of functionalities, be it on-premises or in any cloud, using the same application stack. Users are not even aware that their applications are running on Kubernetes, nor on which infrastructure they are running: in their own data centers or at a specific cloud provider, like Google, Microsoft, or Amazon.

Reducing complexity in hybrid cloud environments by using a standardized software stack like Kubernetes comes with many advantages: improvements made for one platform can be made automatically available on other platforms; deployment and operational aspects can be simplified; and security audits are easier and rigorously to execute.

Kubernetes and HPC

Kubernetes is the de facto platform for AI and ML already. However, when it comes to traditional HPC, some challenges remain. There is still a set of features built into HPC workload managers not yet available in Kubernetes. We discussed the major differences already previously in our HPCwire Part I article. Major gaps of Kubernetes for HPC currently are: native support for distributed memory jobs, namely MPI applications, and a missing job queueing system compatible with existing HPC applications.

Kubernetes has built-in high availability on many layers. However, for HPC jobs, it is not enough to restart a single container that failed because the whole distributed job itself might have failed already. In this case, automatic rescheduling of the entire distributed memory job is required. This is something Kubernetes doesn’t handle.

Beside these challenges, Kubernetes comes with many benefits for HPC: for example, the environment for the engineer and for the containerized HPC application is always the same, be it on-premises or running in a cloud-based environment; and the capability to quickly change from one infrastructure to another allows the HPC team to align with their company’s cloud roadmap. The freedom to move workloads between infrastructures based on a common API – the Kubernetes API – is what becomes valuable.

Containerized HPC Applications on Kubernetes

Over the past five years, dozens of HPC applications have been containerized, be it commercial, like ANSYS, COMSOL, STAR-CCM+, or open source packages like OpenFOAM and GROMACS, along with HPC cluster schedulers like Univa Grid Engine and Slurm. Thanks to container technology, a constant stream of updates and improvements is provided which can be promptly and seamlessly updated by customers. Additionally, the container images allow users to go back at any time to a previous application version so that they always can reproduce their previous results.

Example HPC Application Cluster Architecture running on Managed Kubernetes.

In the meantime, many container environments have been implemented by using infrastructure and configuration management tools like Terraform and Puppet or by building cloud specific HPC integrations into existing portals. But with the advent of Kubernetes, container environments became easier to maintain and are much more dynamic. Rolling out a cluster, rescaling the worker nodes, using a constant set of preemptible instances, and high availability are driven by controllers which continuously drive the cluster to the desired state. Thus, major HPC gaps of Kubernetes have been closed. This way, today, distributed memory/MPI jobs can be supported in any Kubernetes environment, which provides a built-in HPC workload manager integration running inside HPC containers. That allows traditional HPC applications to run without any changes. Also, GPU and non-GPU enabled applications based on Ansys and COMSOL have been launched successfully, through a high-performance, GPU enabled desktop running inside a pod. Once logged in to the desktop the engineer can start submitting batch jobs or single MPI applications which are distributed across a set of pods allocated on multiple nodes.

Conclusions

Kubernetes not only supports microservice based enterprise applications, but also self-service engineering HPC applications. In summary, as this research has shown, the key advantages of using Kubernetes as a foundation for running containerized engineering applications are:

  • Unified application stack available on virtually any infrastructure
  • True hybrid cloud usage scenarios for engineering workload. For the engineers it is transparent where the application runs, be it on-premises or in the cloud
  • which leads to providing the best performance for running engineering applications by allocating always the newest and fastest machines available in the cloud
  • Building and resizing a self-contained HPC application and compute cluster as self-service for the engineer which is only limited by cloud quotas and budget per time period
  • Robust management stack, supported by many Cloud providers
  • Optimizing costs by only paying for what is used. No idle resources which need to be allocated before they are going to be used.
  • High security through self-contained dedicated compute clusters
  • Minimal operational overhead by self-provisioning and disposable components for which updates are simple destroy and re-create commands
  • Kubernetes based workload is easier to integrate in widely adopted continuous integration and deployment solutions (like Tekton, Concourse, or future versions of Jenkins)

In this research, container-based HPC application environments have been implemented on top of Kubernetes (e.g. on Google GCP and Amazon AWS) and also used as self-service test environments which can be deployed from scratch by HPC application specialists, not operators. It has also been used in CI/CD pipelines to automatically build test environments which run tests against existing container solutions and shut down the infrastructure afterwards. In customer environments, the IT group benefits from an easier to maintain system using a supported, managed Kubernetes which can ramp up, resized and deleted computing resources within minutes.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. In this article and the part-one article published on HPCwire last September, they describe their experiences during the last 12 months using UberCloud HPC containers on Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This