Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application management solutions for each cloud provider, adds lots of friction in dynamically allocating, using, and managing those resources.

Lack of a common management and operating model in hybrid cloud environments can cause:

  • Inhomogeneous, fragmented environments create additional complexity for managers, operators, and security.
  • Speed of innovation slows down due to hybrid environments without common management.
  • Cloud resources are hard to change or shutdown when dependent on a cloud provider’s specific services.
  • Workloads can’t be easily migrated back to on-premises environments when bound to specific cloud environment setups, and vice versa.

Kubernetes has become the de-facto standard container orchestrator as pointed out in a previous article. All major companies provide and build solutions on top of a standardized API which is available everywhere. CIOs are now looking into the applicability of Kubernetes for HPC in hybrid-cloud as it offers a common management and operating model for every environment.

Kubernetes: A Common Management and Operating Model for Hybrid Cloud

Kubernetes facilitates the use and administration of countless containers running on fleets of servers. It is the new standard platform for hybrid environments supported by many IT vendors and cloud providers. CIOs can now allocate a fully configured and supported container orchestrator as base for all of their application workloads.

Kubernetes, unlike proprietary infrastructure solutions, provides portability, ease of administration, high availability, integrability, and monitoring capabilities. When managing resources on Kubernetes CIOs are no longer bound to a specific infrastructure. They can offer their users the same set of functionalities, be it on-premises or in any cloud, using the same application stack. Users are not even aware that their applications are running on Kubernetes, nor on which infrastructure they are running: in their own data centers or at a specific cloud provider, like Google, Microsoft, or Amazon.

Reducing complexity in hybrid cloud environments by using a standardized software stack like Kubernetes comes with many advantages: improvements made for one platform can be made automatically available on other platforms; deployment and operational aspects can be simplified; and security audits are easier and rigorously to execute.

Kubernetes and HPC

Kubernetes is the de facto platform for AI and ML already. However, when it comes to traditional HPC, some challenges remain. There is still a set of features built into HPC workload managers not yet available in Kubernetes. We discussed the major differences already previously in our HPCwire Part I article. Major gaps of Kubernetes for HPC currently are: native support for distributed memory jobs, namely MPI applications, and a missing job queueing system compatible with existing HPC applications.

Kubernetes has built-in high availability on many layers. However, for HPC jobs, it is not enough to restart a single container that failed because the whole distributed job itself might have failed already. In this case, automatic rescheduling of the entire distributed memory job is required. This is something Kubernetes doesn’t handle.

Beside these challenges, Kubernetes comes with many benefits for HPC: for example, the environment for the engineer and for the containerized HPC application is always the same, be it on-premises or running in a cloud-based environment; and the capability to quickly change from one infrastructure to another allows the HPC team to align with their company’s cloud roadmap. The freedom to move workloads between infrastructures based on a common API – the Kubernetes API – is what becomes valuable.

Containerized HPC Applications on Kubernetes

Over the past five years, dozens of HPC applications have been containerized, be it commercial, like ANSYS, COMSOL, STAR-CCM+, or open source packages like OpenFOAM and GROMACS, along with HPC cluster schedulers like Univa Grid Engine and Slurm. Thanks to container technology, a constant stream of updates and improvements is provided which can be promptly and seamlessly updated by customers. Additionally, the container images allow users to go back at any time to a previous application version so that they always can reproduce their previous results.

Example HPC Application Cluster Architecture running on Managed Kubernetes.

In the meantime, many container environments have been implemented by using infrastructure and configuration management tools like Terraform and Puppet or by building cloud specific HPC integrations into existing portals. But with the advent of Kubernetes, container environments became easier to maintain and are much more dynamic. Rolling out a cluster, rescaling the worker nodes, using a constant set of preemptible instances, and high availability are driven by controllers which continuously drive the cluster to the desired state. Thus, major HPC gaps of Kubernetes have been closed. This way, today, distributed memory/MPI jobs can be supported in any Kubernetes environment, which provides a built-in HPC workload manager integration running inside HPC containers. That allows traditional HPC applications to run without any changes. Also, GPU and non-GPU enabled applications based on Ansys and COMSOL have been launched successfully, through a high-performance, GPU enabled desktop running inside a pod. Once logged in to the desktop the engineer can start submitting batch jobs or single MPI applications which are distributed across a set of pods allocated on multiple nodes.

Conclusions

Kubernetes not only supports microservice based enterprise applications, but also self-service engineering HPC applications. In summary, as this research has shown, the key advantages of using Kubernetes as a foundation for running containerized engineering applications are:

  • Unified application stack available on virtually any infrastructure
  • True hybrid cloud usage scenarios for engineering workload. For the engineers it is transparent where the application runs, be it on-premises or in the cloud
  • which leads to providing the best performance for running engineering applications by allocating always the newest and fastest machines available in the cloud
  • Building and resizing a self-contained HPC application and compute cluster as self-service for the engineer which is only limited by cloud quotas and budget per time period
  • Robust management stack, supported by many Cloud providers
  • Optimizing costs by only paying for what is used. No idle resources which need to be allocated before they are going to be used.
  • High security through self-contained dedicated compute clusters
  • Minimal operational overhead by self-provisioning and disposable components for which updates are simple destroy and re-create commands
  • Kubernetes based workload is easier to integrate in widely adopted continuous integration and deployment solutions (like Tekton, Concourse, or future versions of Jenkins)

In this research, container-based HPC application environments have been implemented on top of Kubernetes (e.g. on Google GCP and Amazon AWS) and also used as self-service test environments which can be deployed from scratch by HPC application specialists, not operators. It has also been used in CI/CD pipelines to automatically build test environments which run tests against existing container solutions and shut down the infrastructure afterwards. In customer environments, the IT group benefits from an easier to maintain system using a supported, managed Kubernetes which can ramp up, resized and deleted computing resources within minutes.

About the Authors

Daniel Gruber, Burak Yenier, and Wolfgang Gentzsch are with UberCloud, a company that started in 2013 with developing HPC container technology and containerized engineering applications, to facilitate access and use of engineering HPC workload in a shared on-premise or on-demand cloud environment. In this article and the part-one article published on HPCwire last September, they describe their experiences during the last 12 months using UberCloud HPC containers on Kubernetes.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This