Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

By Tiffany Trader

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting to good use discarded high-end computer hardware that would otherwise end up in landfills. Their tagline is “a cure could be waiting in line,” and their objective is to point as many cycles as possible at eliminating computational wait times that impede medical advances.

Since its founding five years ago, Cancer Computer has amassed 14,300 cores, in-line with the computing capacity of a mid-sized university, for researchers across the United States and Canada. In a typical scenario, Cancer Computer gets hardware from a corporate partner that’s upgrading their own hardware and supports the mission of helping advance omics-based research.

Founder and CTO Roy Chartier – who also started a for-profit company, Canada HPC Corp., earlier this year – said the inspiration for Cancer Computer came to him when he realized there was a dearth of resources for research computing, and as the need for computing grows, the gap was only getting worse. He chose cancer as a focus because of its lethality and because much of the research lends itself to high-throughput and high-performance computing. It’s a disease with broad impact – one-quarter of people will get a diagnosis in their lifetime. (Chartier himself told us he lost two people close to him to cancer).

But Cancer Computer doesn’t just focus on cancer, it also supports neuroscience research, contributing spare cycles for protein structure prediction via the Rosetta@home project (for which it is the #1 supporting org). And now Cancer Computer has joined in the global fight against the coronavirus pandemic by directing all available cycles to Rosetta’s COVID-19 project that assists scientists at the University of Washington’s Institute for Protein Design in Seattle. Similar to the Folding@home crowdsourcing coronavirus research project (see related story), Rosetta@home is modeling SARS-CoV2 protein interactions with potential drug targets.

When I spoke with Chartier in February, he was excited about a recent large donation, a tranche of 400 servers from the Canadian government. Chartier rattled off a number of sites where Cancer Computer has deployed its donated hardware: the University of Illinois at Urbana-Champaign, Indiana University, the University of Utah, Queens University in Kingston, ON, and McGill University, Montreal, to name a few. There are a number of private sites as well. As you’d expect, having been in production a few years, most of the donated hardware is Intel-based, but among the thousand-or-so nodes put into service, there are a couple dozen AMD servers and several GPU racks. Chartier said he’s interested in getting more AMD gear, which he says has demonstrated good results on some of the bio-benchmarks, like GROMACS.

Typically, Cancer Computer allocates 75 percent of its donated resources to the host institution with the remaining 25 percent dedicated specifically for the organization’s charitable goals through a number of projects. These include Open Science Grid, XSEDE, as well as Boinc-based distributed research networks, the World Community Grid and Rosetta@home. Cancer Computer also fields specific requests for researchers who do not have other resources available to them.

Cancer Computer’s donated servers are deployed either at a host institution or in a colocation facility operated by Cancer Computer or a partner. As the organization scales, Chartier would like to grow the colo side, with an eye to sites in green-power regions, including Quebec and Ontario, rich in hydro-electric power, and possibly geo-thermal powered Iceland. Certain workloads, such as ones involving clinical data, mandate the need to comply with HIPAA or PHIPA (Canada’s version of HIPAA), which can only be guaranteed in a commercial datacenter.

As a charity, funding is a constant challenge. Although the computers are donated and the staff are volunteers, there are still expenses: replacement hard drives, SSDs, RAM, switches and rails, as well as travel expenses for on-site installations. There is right now a concerted effort at Cancer Computer to build up their board and secure corporate sponsorships in order to scale and be more sustainable. A near-term goal is to employ one or two full-time techs and to implement cost recovery measures.

“We find people that we ask [to be involved] and they’re very passionate about it; they’re willing to help where they can, so it’s just a matter of finding the right people, the right institutions, the right projects, and the right donors, you know, the people who want to support you,” said Chartier.

Supercomputing has a history of giving decommissioned systems a new lease on life. This includes the high-profile donation of TACC’s Ranger system to universities in South Africa, as well as the UCSD Gordon system put into service at Simons Foundation’s Flatiron Institute in New York. But some donations you probably haven’t heard of. For various reasons, the partners may not want to make it public; often because they don’t want to ruffle the feathers of vendors in the business of selling the next-generation of gear. But with so many good causes needing processing power and the importance of reducing e-waste, there is growing support in the community – vendors included – for extending the life of systems that would otherwise end up in a landfill.

“The whole thing comes down to open science, right?” said Chartier. “Open science and sharing of data, sharing of research. If we get, let’s say, two or three more sites, and we had a constant inflow of gear, and we had enough money to be able to have technicians clean it, update the firmware and ship it to these locations, we continue to develop this international e-infrastructure, and make it sustainable and much bigger – I mean, no matter how much money you throw at a problem, particularly like cancer, you know, there’s always room for more.”

“We don’t want to compete with the vendors,” he added. “But if there’s usable, secondhand gear that’s being thrown out, my goodness, that’s definitely something that that really shouldn’t happen.”

A number of prominent organizations agree. At the University of Illinois at Urbana-Champaign, Cancer Computer’s deployment of 300 servers supports the work of more than 500 researchers per year. Cancer Computer is in the process of installing a high-throughput cluster at McGill comprised of some 400 servers. Indiana University is another high-profile site; the partners recently extended a three-year relationship.

For donations, Cancer Computer only accepts gear that’s less than 10 years old. On the compute side, Cancer Computer looks for Ivy Bridge processors or better; for storage it can go back a generation or two. The better equipment gets put into production, and the charity is also building an internal system with plans to assist partner universities with code development and the building of in-house applications.

In most cases, the hardware that Cancer Computer gets is at the end of its support contract. “We can give it a second life. Outside of a DMZ, the servers can run lots of workloads if there’s no personal data, and you don’t typically need the same levels of security that you would require with warrantied gear. Even if 10-20-30 percent of your drives are dead, you can set up your storage to be distributed and you can run, no problem. HPC can be engineered and architected in such a way to do that. It’s not a five-nines scenario,” he said.

Canada HPC

Chartier also updated us on Canada HPC, formed when some of the volunteers from Cancer Computer saw a commercial opportunity for workloads outside the cancer research space, as Cancer Computer’s mission is to provide compute resources to researchers either free where possible, or heavily discounted on a cost-recovery basis.

Earlier this month, Canada HPC signed a partnership agreement with Dell. As a solutions provider for Dell, Canada HPC will do everything from the rack-and-stack, configuration, deploying the scheduling tools, up to and including support. Chartier explained that Dell saw a need and reached out to them – and Canada HPC had the necessary Canadian federal government security clearances.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pushes chemistry calculations forward, D-Wave prepares for its Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-apples) datacenter and edge categories. Perhaps more interesti Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark Nossokoff looks at key storage trends in the context of the evolving HPC (and AI) landscape... Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Top500: Fugaku Still on Top; Perlmutter Debuts at #5

June 28, 2021

The 57th Top500, revealed today from the ISC 2021 digital event, showcases many of the same systems as the previous edition, with Fugaku holding its significant lead and only one new entrant in the top 10 cohort: the Perlmutter system at the DOE Lawrence Berkeley National Laboratory enters the list at number five with 65.69 Linpack petaflops. Perlmutter is the largest... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire