Accelerating HPC Applications with Panasas’ ASCA Intelligent Data Placement Architecture

By Curtis Anderson, Software Architect at Panasas.

March 23, 2020

Organizations need to periodically rethink their high-performance storage strategies due to changing requirements for high-performance computing (HPC).

In the past, a lab or corporation might run a limited set of HPC applications. So a system and its storage could be optimized for a narrow set of workloads. Today, HPC workloads in most organizations are highly variable. One group might need to train a machine learning model, another might run very granular finite element simulation models, and yet another might require the lookup and high-speed search of a massive genomics database.

Each of these workloads has vastly different computational requirements; organizations can no longer rely on a solution optimized for a specific workload.

Further complicating matters is the type of data being used in HPC applications. Many more workloads today use large numbers of small files. In general, the number of small files is going up, and the average size of the files is going down. This has great implications when trying to match a suitable high-performance storage system to HPC processing power and memory systems.

Organizations must find a balance where appropriate storage is matched to file workloads to ensure a cost-effective solution that delivers the needed performance. Let’s take a look at what’s at issue and how an intelligent data placement architecture can help.

Why are these changes an issue?

With any HPC application, the challenge is how to keep the CPUs (and now GPUs) satiated to make the most efficient use of expensive HPC hardware. The combination of variable workloads and the growing number and small size of data files makes this harder to achieve.

If a system just uses HDD storage, its performance suffers if an application makes use of many small files. Conversely, SSDs will solve the performance problem for small files, but it is cost-prohibitive to use SSDs for everything at the high capacities HPC applications require.

Typical approaches use a small number of SSDs for so-called hot data (data that has recently been read or written), independent of the file sizes involved. While this can help workloads where data reuse is high, is doesn’t help workloads like AI where there is very little data reuse during any given training session.  It’s especially challenging to use so-called “LRU” (Least Recently Used) caching with such a widely mixed workload.

Solution: The Panasas ASCA Intelligent Data Placement Architecture

Panasas ActiveStor® solutions provide high-performance scale-out storage for HPC applications. They address mixed workload and file size issues using a data placement architecture called Adaptive Small Component Acceleration (ASCA) https://www.panasas.com/company/why-panasas/high-performance/.

The ActiveStor solution lets organizations use the right kind of storage for each kind of data. Large files are stored on low-cost, high-bandwidth SATA HDDs, small files are stored on cost-effective, high-IOPs SATA SSDs, and metadata is stored in a database on low-latency NVMe SSDs.  The solution includes just enough of the more expensive types of storage media, minimizing overall cost while still delivering the best performance.

ASCA is a hands-off, automated solution that dynamically moves data between SSDs and HDDs based on the mix of file sizes and the fullness of the SSDs. It ensures that any file smaller than about 128KB will be kept on SATA SSDs, while larger files are stored on HDDs, but ASCA automatically adjusts that 128KB line. If the SSDs are too full, the largest files stored on the SSDs are migrated to the HDDs, and if the SSDs are not full enough, the smallest files on the HDDs are migrated to the SSDs.

ASCA addresses performance issues in several ways. File performance is a combination of accessing the metadata for each file plus accessing the data in that file. The Panasas solution improves the raw speed of accesses to metadata by keeping the metadata in a database and storing that database on NVMe SSDs. SATA SSDs are a cost-effective and high-performance way to store and deliver small files without seek penalties. And finally, ASCA allows HHDs to consistently deliver their highest bandwidth because they are not burdened with any head seeks for small files or for metadata.

The net result of this combination is that the more costly device types are minimized, and every device is only doing what it is good at.  Small file accesses will not impact the performance of large files, and metadata accesses never wait behind file accesses.

The performance benefits of using the intelligent data placement architecture of ASCA complement the many ease-of-management, and scalability benefits already delivered with Panasas ActiveStor and Panasas PanFS®, the operating environment for Panasas ActiveStor systems.

Simply put, Panasas provides scale-out storage with limitless scaling offering optimal data placement and an internally balanced architecture to boost efficiency.

For more information about matching storage to today’s HPC workloads, visit www.panasas.com

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire