Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

By John Russell

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress on what such a program might look like. It is early days and the general thinking is AI for Science could be a 5-to-10-year platform from which to accelerate development of AI technologies and applications relevant to DoE and science broadly.

The report itself is fascinating. Written by six prominent DoE researchers – Rick Stevens and Valerie Taylor (Argonne National Laboratory); Jeff Nichols and Arthur Barney McCabe (Oak Ridge National Laboratory); and Kathy Yelick and David Brown (Lawrence Berkeley National Laboratory) – the AI for Science reports seeks to summarize and prioritize the core ideas discussed by more than 1000 attendees to DoE’s series of town hall meetings held between July and October of last year. (HPCwire coverage)

Rick Stevens, Argonne National Laboratory

HPCwire recently had a chance to talk with Stevens, one of the report’s authors and associate laboratory director at ANL, about the scope of the potential AI project and a few particulars regarding the AI opportunity and challenge. He framed the project around three points:

  • Community. “First, like exascale, this is really a whole community coming together to build hardware and software. 1000 people participated – people from 17 Labs, from 90 universities, from 30 companies was, you know, very broad base four different meetings, 350 people plus at each of the meetings. The high-level thing that we wanted to accomplish with this is to get a baseline document that captures the excitement and the opportunity space and gives us a platform to start working on a program concepts.
  • Impact. “Second, this is the probably the most important direction for computing in science that we know about and we are significantly ahead of the curve of most other countries. We’ve got collaborations planned with the U.K. and other countries on this front, but relative to efforts happening in Asia, we don’t see that yet. So it’s not just an American thing, but the idea that we’re going to pivot pretty quickly from exascale to very large-scale applications of AI is interesting and strategic. We’re not seeing this happening in other places yet.
  • Commitment. “Third, to actually realize the benefits of AI is going to be a large-scale effort over many years. It’s not about a little bit of money for a couple years.”

It was a wide-ranging discussion encompassing hardware, software development, and what Stevens believes will become wider inclusion of experimentalists as HPC users as AI assumes a greater role during data collection and as an interface with HPC systems. Interestingly, one worry is we’ll rush to develop hardware based on the current crop of commonly-used algorithms and potentially get bogged down as new AI-centric algorithms emerge. Presented here are a few of Stevens observations.

HPCwire: Since you make the point that the AI effort will leverage the exascale efforts, let’s start with hardware.

Rick Stevens: Everybody’s talked about how the exascale machines are going to be excellent platforms for deep learning training because the lower precision we need for deep learning training is going to be amazingly fast on these machines. And that’s true. But as we look towards the future, we’re trying to understand what’s the mix going to be between simulation use cases for future hardware and machine learning use cases or AI use cases. In order to explore that more deeply we’re going set up a testbed for the advanced AI hardware coming out of startups like Cerebras, Samba Nova, Groq and Graphcore and others.

We’re interested in taking the models that we’re developing for scientific applications that might be dealing with types of data that are different from internet applications or just standard computer vision, and the types of architecture models that we need for those [scientific] problems, and use those as test cases on this new hardware. We’ll use those test cases on this new hardware and try to learn from their relative performance and functionality to feed forward into future architectures that would combine traditional processing elements with accelerators for AI. So that’s kind of how the hardware piece fits.

HPCwire: Are there any examples of the hardware you’re working with now and the problems you’ve now started to attack on it, and what advantages it brings to it?

Image courtesy of Argonne National Laboratory.

Stevens: My team’s been working a lot with Cerebras. We have Cerebas’ CS1. That’s the world’s largest chip with 1.2 trillion transistors, and hundreds of thousands of cores. We’ve got several different models running on that. We have a cancer-drug response prediction model that’s running many hundreds of times faster on that chip than it runs on a conventional GPU. We have a gravity wave detection code that’s also running many times faster than the GPU on this platform. That’s a code is used for processing things like LIGO (Laser Interferometer Gravitational Wave Observatory) data looking for signals to gravity waves. We have materials design [projects] as well. We have about a dozen projects in the pipeline.

HPCwire: This seems to suggests that even near term some of the better devices used for advanced AI will be different from traditional CPU-GPU approaches. Is that a fair assumption?

Stevens: I think the way to look at it is the architectures that we’re doing the bulk of the work on now, which are primarily CPU- GPU-based and have been around for a bunch of years, are proven. The software stack on them is quite good. The support for deep learning frameworks is very robust. It’s really the current standard platform, right. And, we’ve got machines coming, like Frontier and Aurora, and so on that will have next generation versions of that technology and they’re going to be super at that.

The great thing about the GPUs is they’re quite general purpose. We can use them for machine learning. We can also use them for vector processing, solving, simulations. If you look at how far can you push computer architecture, the only thing you’re trying to do, and it’s critically important to get this right, is if all you’re doing is deep learning training, or deep learning inference, how much faster can you go than a GPU? That’s more or less the question we’re trying to answer with these AI hardware platforms. There’s dozens of companies now making those platforms.

The thing to be careful of is that in the future we will still need to do an enormous amount of simulation and we’ll need general purpose machines for that. Everything that we invented over the last 20-30 years including HPC has been essentially on general purpose machines. What we’re trying to understand is what is the tradeoff between general purpose hardware – whether it’s a GPU or extensions to CPUs like vector extensions like on the Japanese machine – versus these very special purpose accelerators that essentially are good at only one thing, which is a training or inference in deep learning. How would they fit into the ecosystem? It’s unlikely that we would have a system that only has those accelerators, because it would be very limited in what we could do with it.

On the other hand, if we can learn what are the key features of those accelerators that give them the most of the of the bang for the buck if you want to think of it that way, we can think about how architectures might converge in the future? That’s really the end game that we’re aiming at. So it might be future hardware systems, like in the 2025 kind of timeframe, have not just CPUs and GPUs, but they might have a lot of these specialized accelerators also in the architecture. Getting that mix exactly right is one of the questions. Like what’s the right ratio? What are the types of applications that would be good or bad on that kind of architecture.

So that’s kind of the pathfinding work that we’re doing. It’s also likely that some of the accelerator ideas that are in dedicated hardware will find their way into more general-purpose platforms like future GPUs or CPUs. There’s a number of us have been spending a lot of time talking about that. There’s even a bet that I’ll tell you about some time over beer on how that might play out. I think that what we’re discovering, what’s so exciting about this, is that even though Moore’s Law is slowing down and it’s becoming harder to do things, the number of architectural ideas in circulation right now has never been greater in some sense. I mean, maybe back in the 60s, it was larger when people were inventing everything (IT-related) then.

HPCwire: That all sounds positive.

Stevens: Well, we’re suddenly in this realm where we literally have 100 companies trying to come up with new architectures all chasing the AI target. And it’s already unclear to me right now, in some fundamental sense, whether we have the right algorithms. If the hardware is prematurely optimized for the current algorithms, right, the current methods, that could backfire because we keep inventing new methods. At the same time, for certain problems, there may be cases where I can just do something I wanted to do on accelerators that I can also do on the other machine but it’s just taking a lot longer. It’s super important to actually have these [new devices] in our labs and made available to our community. We, and the DoE, have this incredible environment where we have access to the best of all these worlds and are in a great position to actually evaluate them.

HPCwire: Your point about algorithms is interesting. Along those lines will the AI for Science program have a software component, a sort of analog to the Exascale Computing Project which focuses on the needed software ecosystem to support exascale?

Stevens: We’re still trying to work out what the specific program elements are. Certainly we’ll need big pushes on what you would call an application, where there’s a domain facing activity. AI for specific kinds of problems, whether materials or chemistry or physics or astrophysics, or whatever. You can imagine there will be pieces like that. There is a need for a new type of software infrastructure that connects all this stuff together and helps us manage large amounts of data. Or it’s, you know, huge libraries of thousands of models or millions of models. It creates a whole ecosystem around a new currency, which is kind of data and models. That’s different from what we currently have.

Clearly there will be revisions of workflows too which include significant AI components, whether that’s in experimental science or whether it’s AI that helps us write code. The latter is already starting to happen, having AI systems that are helping debug codes or tune codes or translate codes or even sometimes writing code directly. That’s going to change the software development process, which in the context of like exascale is pretty much the same way we’ve been doing things for a long time. Exascale is not really changing how we do software development but the AI initiative will probably do that.

Of course, the [existing] simulation and the existing software stacks and libraries, none of that has to go away because much of how we’re going to use AI is actually coupled to the traditional scientific computing software stack.

HPCwire: But AI will itself become a major part of the software development paradigm?

Stevens: Probably the right way to think about this is that all these things [software development process and components] are going to be augmented with AI. There’ll be many applications that are kind of AI-centric, machine learning-centric; some that will still be simulation-centric; and some will be hybrid. Software environments [are likely] to evolve from the kind of batch oriented traditional simulation towards these more real time interactive, collaborative or shared, resources that support a much larger number of projects simultaneously. The underlying system software and the hardware will have to evolve to support these new workloads.

We know from the exascale [experience] that we can have reasonable success with the current organizational model, right, where in applications and software and kind of hardware investments as a project. And then the facilities, acquisitions kind of in the initiative. But I think with AI, the one thing that we’re starting to understand is that we need a bit more research. I say a bit more but probably a lot more research so rather than moving quickly to a formal kind of project, I think it will have to incubate in research mode a bit longer.

HPCwire: Are there good examples now of AI writing code or tuning code you can cite?

Stevens: There’s quite a few that are starting to pop up. One of the big use cases at Argonne, Oak Ridge, Los Alamos, and Livermore is to use large scale computing, with deep learning, to optimize other deep learning network design. In deep learning, you write a lot of code, but you’re often trying to improve the model architecture; the number of layers and the topology of the neural network that you’re building. It turns out that deep learning is really good at doing that problem. So think of it as AI writing AI. That use case is becoming very common. We’re doing that now on Summit. We’re doing it now on Theta. This is a routine thing that we’re doing to improve our models by using a different AI model to actually design the new AI model. In some cases you get incredible boost in improvements in wall clock performance or accuracy. I mean by factors of two or five or something like that.

So the models were for a problem in cancer in natural language processing problems, and then another was for the climate data, and it was applied to a problem in cosmology. It’s a very general technique and can be used pretty much all domains in which deep learning can be applied. There’s actually a fair amount of work going on and not just in the labs. It’s happening in industry where this idea of having coded systems is gaining traction.

HPCwire: We haven’t talked much about applications. One area that has been receiving attention is the potential to use AI for facilities and systems management. Thoughts on how DoE could leverage that?

Stevens: DoE runs about 27 or so user facilities and many of these are experimental user facilities, like the light sources, neutron sources and things like that. There, the principal idea is we’re often collecting data that has to be post-processed. One thing you could do is use machine learning methods to do post processing very quickly. Or you could use machine learning or maybe reinforcement learning to control the configuration of the experiment to collect data in a more efficient way. There are many dozens of ways of using machine learning there. So that’s an experimental side. We can also use AI methods to monitor and manage HPC systems and to optimize data paths, data flows, workflows, and so on.

So we’re starting to see the need to think differently about how we operate these facilities. There’s applications in the kind of control data reduction space that are starting to gain traction. One of them is in what I call complex experiment control and there are two examples that are already out there.

One is in fusion where deep learning models are able to predict the future state of the plasma, you know, many milliseconds in advance. They can predict pretty accurately if that plasma is going to go unstable. The reason that’s kind of cool, is that humans can’t do that. We can’t look at the diagnostic data coming off the test reactors and predict what’s going to happen. I mean, it just happens too fast. Properly trained, the network can do that. The next step there is trying to interface that to the control system so not only is it going to predict when something’s going to go unstable, it can control the reactor to move away from that zone so maybe it would not crash. Doing that involves taking these deep neural networks and interfacing them with classical control systems or maybe replacing that class control system with a different way to do control.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This