DoE Expands on Role of COVID-19 Supercomputing Consortium

By John Russell

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its scope and operation in a briefing led by Undersecretary of Energy Paul Dabbar and attended by HPC leaders from national labs. The joint public-private effort will pool 16 systems which together offer more than 330 petaflops along with extensive cloud resources. A portal has been set up to receive COVID-19 project proposals.

This excerpt is from the portal:

“Researchers are invited to submit COVID-19 related research proposals to the consortium via this online portal, which will then be reviewed for matching with computing resources from one of the partner institutions. An expert panel comprised of top scientists and computing researchers will work with proposers to assess the public health benefit of the work, with emphasis on projects that can ensure rapid results.

“Fighting COVID-19 will require extensive research in areas like bioinformatics, epidemiology, and molecular modeling to understand the threat we’re facing and form strategies to address it. This work demands a massive amount of computational capacity. The COVID-19 High Performance Computing Consortium helps aggregate computing capabilities from the world’s most powerful and advanced computers to help COVID-19 researchers execute complex computational research programs to help fight the virus.”

Key government partners so far include Argonne National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Oak Ridge National Laboratory, Sandia National Laboratories, National Science Foundation, and NASA. Among industry partners are IBM, HPE, Amazon Web Services, Google Cloud, and Microsoft. A few examples from academia include MIT, Rensselaer Polytechnic Institute, University of Chicago, and Northwestern University. IBM is also hosting a central portal.

Summit supercomputer at Oak Ridge National Laboratory

As explained by Dabbar, the current plan is to reallocate resources (compute cycles and expertise) rather than attempt to acquire and stand-up new resources. That said, additional resources could be made available as they come online. “We’re showing a very high degree of precedence towards this consortium and overall COVID-19 research,” said Dabbar. Systems will include leadership platforms such as Summit (ORNL) currently the fastest supercomputer in the world (Top500 List, Nov. 2019) and Sierra (LLNL). A fuller list of the computational resources available along with information about joining the consortium is at the end to the article.

In fact, several COVID-19 projects are already underway. Dabbar referenced an Oak Ridge National Lab project in which researchers explored 8000 compounds of interest narrowing that to 77 promising small molecule drug compounds. Not surprisingly the early COVID-19 drug research is focused on already approved drugs (~10,000) because they have already passed safety hurdles and more is known about them.

It’s worth noting DoE and other government agencies already have aggressive computational life science projects. The CANDLE project being run by the DOE Exascale Computing Project and supported by NCI is a good example. It’s focused on building machine learning tools for use in cancer research. There’s also the ATOM (Accelerating Therapeutics for Opportunities in Medicine) project at LLNL. Both CANDLE and ATOM are pivoting efforts toward COVID-19.

How the various supercomputing resources will be deployed varies. A key piece is working out therapies. This answer by one of the lab directors to a question on what the key bottleneck is that computational resources are being applied to does a nice job summarizing the directions:

“We kind of understand this virus because it’s similar to other Coronaviruses. It does have some mutations from SARS and from MERS. Computation is being used to build evolutionary trees, phylogenetic trees to understand the mutational patterns and how those are related geographically and temporally. Computation is being used to refine epitopes of small sub sequences that can be antigenic and are the first stage in trying to decide targets for vaccines. Computation is being used to design antibodies, which are also related to trying to improve a vaccine or antibiotic based treatments.

“In the case of the small molecule, there’s about 26-27 proteins that the virus codes for. Sixteen or so that are non-structural there that are involved in the virus replication inside the cell, and the rest are structural proteins that form the coat of the spike and so forth. Each of these is potentially affected by a number of pockets or sites that we can target with small molecule. Most of proteins form complexes, so they have many possible places you could potentially drug them.

“All told there’s probably 50 or 60 drug targets including interactions between the viral proteins and the host proteins. You have this large number of targets, many pockets potentially in each target. And you’ve got potentially billions of molecules that you want to look at in some efficient way to see whether or not they’re potentially good inhibitors of those interactions. And then screen them for toxicity, for all the things that the drugs would have to pass this criterion. So it’s a huge amount of computational work.

“We’re getting structures for the proteins from the light sources at Argonne, and neutron sources at Brookhaven and other places in the country as well as internationally. So there’s a constant flow of new protein structures that are refining the models that we already have of the 3D structures. And a number of those are coming with small molecule ligands bound into the pockets so we can understand the predictions from computation [and] how well they’re actually holding up in the laboratory when you co -crystallize with these small molecules.

“So the bottleneck is really in searching through this vast molecular space for good targets, with a particular focus on repurposing existing drugs since those are the probably the fastest route to point of care. But we’re looking at many, many libraries of molecules and trying many computational methods, including AI methods to try to accelerate the search, without doing just mechanistic modeling but AI based modeling as well.”

There’s a lot going on here and across other disciplines such as epidemiology, logistics, etc.

Paul Dabbar, U.S. Undersecretary of Energy

Dabbar likened the consortium’s efforts to a three-leg stool requiring the high-power systems themselves, expertise to run the systems, and subject matter experts with suitable problems to solve. One lab leader weighed in on their intent to mobilize internal resources to help researchers:

“[It’s] important to realize that these computing resources also have teams at each of the laboratories…experts at taking application codes and software and applying software tools from the laboratories to enhance the applications and to make them run more efficiently and effectively on the systems. So that as the projects are assigned, and teams are deployed and applications are deployed to the particular systems, I would also expect that there will be collaborations with the laboratory scientists to make sure that the applications can effectively use those resources.”

Dabbar noted, “DOE national labs and the 60,000 researchers that are at the National 17 sites is the largest basic research organization in the world. And it is the largest generator of Nobel Prize winners in the world.” He emphasized that supercomputing and AI are well-funded priorities in President Donald Trump Administration. The current administration’s enthusiasm for funding science more general and specifically in areas such NIH may be open to debate but now is not time.

Shown below are a screen shot of guidelines for preparing submissions (DoE web site) and a screen shot of computer resources (IBM portal):

Links to COVID-19 High Performance Computing Consortium: https://www.xsede.org/covid19-hpc-consortium; https://www.ibm.com/covid19/hpc-consortium/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Supercomputers Assist Hunt for Mysterious Axion Particle

January 21, 2021

In the 1970s, scientists theorized the existence of axions: particles born in the hearts of stars that, when exposed to a magnetic field, become light particles, and which may even comprise dark matter. To date, however, Read more…

By Oliver Peckham

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Researchers Train Fluid Dynamics Neural Networks on Supercomputers

January 21, 2021

Fluid dynamics simulations are critical for applications ranging from wind turbine design to aircraft optimization. Running these simulations through direct numerical simulations, however, is computationally costly. Many Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This