ECP Milestone Report Details Progress and Directions

By John Russell

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subprojects (24 applications and six co-design centers) covered in the report, spanning many domains including, for example, chemistry, materials, energy, earth and space science, data analytics, and national security. While the report is lengthy it may be useful for researchers to zero in on application development in their specific areas of expertise for directional guidance.

“Each AD application code team must define an application challenge problem that is both scientifically impactful and requires exascale-level resources to execute. Each exascale challenge problem targets a key DOE science or mission need and is the basis for quantitative measurements of success for each of the AD projects,” notes the report.

ECP has established firm goals, settling on three distinct key performance parameters (KPP-1, KPP-2, KPP-3) reflecting the nature of the task, along with specific figures of merit (FOM).

  • KPP-1 quantitatively measures the increased capability of applications on exascale platforms compared with their capability on the leadership-class machines available at the start of the project. Each application targeting KPP-1 is required to define a quantitative FOM that represents the rate of science work for their defined exascale challenge problem… For KPP-1, a key concept is the performance baseline, which is a quantitative measure of an application FOM using the fastest computers available at the inception of the ECP against which the final FOM improvement is measured. This includes systems at the ALCF, NERSC, and the OLCF such as Mira, Theta, Cori, and Titan—systems in the 10–20 PFLOP/s range. The expectation is that applications will run at full scale on at least one of these systems to establish the performance baseline.
  • KPP-2 is intended to assess the successful creation of new exascale science and engineering DOE mission application capabilities. Applications targeting KPP-2 are required to define an exascale challenge problem that represents a significant capability advance in its area of interest to the DOE…The distinguishing feature of KPP-2 applications relative to those targeting KPP-1 is the amount of new capability that must be developed to enable execution of the exascale challenge problem. Many KPP-2 applications lack sufficient code infrastructure from which to calculate an FOM performance baseline (e.g., they started in the ECP as mere prototypes). Without a well-defined starting point at the 10–20 PFLOP/s scale, it is unclear what FOM improvement would correspond to a successful outcome. A more appropriate measure of success for these applications is whether the necessary capability to execute their exascale challenge problems is in place at the end of the project, not the relative performance improvement throughout the project.
  • KPP-3 is used to measure the impact of both co-design software products and the projects in the ECP’s ST (software technology) scope. ECP KPP-3 impact goals and metrics are the primary high-level means of connecting ECP co-design efforts to the ECP effort as a whole. Achieving these KPP-3 impact goals defines how the ECP’s co-design centers are reviewed and how their success is determined.

The report is fairly detailed and discusses specific challenges encountered and steps taken to adapt code. Much of the work required is to implement parallelism to make more efficient use of the heterogeneous architectures and varying accelerators (Nvidia, AMD, and Intel) planned for the coming exascale systems.

Shown below are lists of applications targeting KPP-1 and KPP-2.

One interesting example is the EXAALT (Exascale Atomistic capability for Accuracy, Length and Time) project; it combines three state-of-the-art codes – LAMMPS, LATTE, and ParSplice – into a unified tool that will leverage exascale platforms across all three dimensions (ALT).

According to the report, “The new integrated capability will be composed of three software layers. First, a task management layer will enable the creation of MD tasks, their management through task queues, and the storage of results in distributed databases. It will be used to implement various replica-based Accelerated Molecular Dynamics (AMD) techniques, as well as to enable other complex MD workflows. The second layer is a powerful MD engine based on the LAMMPS code. It will offer a uniform interface through which the different physical models can be accessed. The third layer provides a wide range of physical models.”

EXAALT’s key performance parameter is for a fusion challenge problem to simulate a surface of tungsten in conditions typical of plasma-facing materials in fusion reactors. These simulations will use the Parallel Trajectory Splicing technique, as well as a hierarchy of parallelization levels (over coarse domain elements, over replicas, and over fine domain elements).

As noted by ECP, “The task management components of the calculations are very light, so will not have to be ported to the GPUs. The overwhelming majority of the flops in the calculations will be consumed carrying out molecular dynamics simulations on each worker process using the LAMMPS MD code and the SNAP model of interatomic interactions. SNAP is a new generation of machine-learned potential that promises high accuracy in exchange for a rather high computational cost. It is therefore critical to efficiently port the SNAP MD kernels to GPUs in order to achieve optimal performance.”

Here are lightly edited excerpts from the report on EXAALT’s GPU strategy and progress being made:

  • GPU Strategy. “Our main approach is to rely on the Kokkos programming model, whose development is also supported by ECP. Kokkos promises portable performance over a wide range of architectures, including Aurora and Frontier. The MD code will be fully ported to Kokkos and will therefore be able to efficiently run on GPUs. In addition, in collaboration with the CoPA (§ 8.2) co-design center and the NERSC Exascale Science Applications Program (NESAP) program at the NERSC, we are developing a suite of SNAP proxy apps (TestSNAP) implemented using different programming models, including OpenMP, CUDA, and OpenACC. This will allow us the flexibility to assess the relative merits of the different approaches and insure we have a fall-back solution in place if the deployment of a production-quality Kokkos backend on Aurora and Frontier is delayed. For example, OpenMP will be supported by all upcoming machines and the CUDA version should be convertible to the HIP runtime API relatively easily.”
  • Result so far. “Rapid progress on the development of a high-performance implementation of the SNAP kernels has been made over the last year, in preparation for early access to NERSC/Perlmutter and for upcoming exascale machines Aurora and Frontier. This work resulted from a close collaboration between EXAALT, NERSC (through the NESAP program), and CoPA.The development of this new version proceeded by the extraction of a CPU SNAP proxy-app (TestSNAP) from the LAMMPS codebase, its rewrite following the discovery of an algorithmic trick that can reduce the number of executed flops, and the restructuring of its memory layout. These improvements yielded an increase in simulation throughput of roughly 2.4× in CPU performance on the P9s of Summit. This version of TestSNAP formed the basis on the new GPU implementation of the SNAP kernels. This new implementation proceeded from scratch, completely independently of the previous Kokkos implementation. Multiple versions were developed by the team, first using OpenACC, then CUDA, and finally OpenMP offload. TestSNAP was re-engineered throughout the year, resulting in a spectacular increase in performance during the summer of 2019, from about 1 katoms-steps/wall-clock second in April to 40 katoms-steps/s in July. At this point in time, the TestSNAP implementation was ported back to a production version of LAMMPS using Kokkos. This effort yielded an increase of 5.5× in simulation throughput on the V100 of Summit, as compared to the original Kokkos implementation at the beginning of the year.”

While the latest ECP report focuses on applications, its larger mission is to ensure a full software ecosystem is ready to take advantage of the coming exascale systems.

Link to ECP report: https://www.exascaleproject.org/wp-content/uploads/2020/03/ECP_AD_Milestone-Early-Application-Results_v1.0_20200325_FINAL.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This