ECP Milestone Report Details Progress and Directions

By John Russell

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subprojects (24 applications and six co-design centers) covered in the report, spanning many domains including, for example, chemistry, materials, energy, earth and space science, data analytics, and national security. While the report is lengthy it may be useful for researchers to zero in on application development in their specific areas of expertise for directional guidance.

“Each AD application code team must define an application challenge problem that is both scientifically impactful and requires exascale-level resources to execute. Each exascale challenge problem targets a key DOE science or mission need and is the basis for quantitative measurements of success for each of the AD projects,” notes the report.

ECP has established firm goals, settling on three distinct key performance parameters (KPP-1, KPP-2, KPP-3) reflecting the nature of the task, along with specific figures of merit (FOM).

  • KPP-1 quantitatively measures the increased capability of applications on exascale platforms compared with their capability on the leadership-class machines available at the start of the project. Each application targeting KPP-1 is required to define a quantitative FOM that represents the rate of science work for their defined exascale challenge problem… For KPP-1, a key concept is the performance baseline, which is a quantitative measure of an application FOM using the fastest computers available at the inception of the ECP against which the final FOM improvement is measured. This includes systems at the ALCF, NERSC, and the OLCF such as Mira, Theta, Cori, and Titan—systems in the 10–20 PFLOP/s range. The expectation is that applications will run at full scale on at least one of these systems to establish the performance baseline.
  • KPP-2 is intended to assess the successful creation of new exascale science and engineering DOE mission application capabilities. Applications targeting KPP-2 are required to define an exascale challenge problem that represents a significant capability advance in its area of interest to the DOE…The distinguishing feature of KPP-2 applications relative to those targeting KPP-1 is the amount of new capability that must be developed to enable execution of the exascale challenge problem. Many KPP-2 applications lack sufficient code infrastructure from which to calculate an FOM performance baseline (e.g., they started in the ECP as mere prototypes). Without a well-defined starting point at the 10–20 PFLOP/s scale, it is unclear what FOM improvement would correspond to a successful outcome. A more appropriate measure of success for these applications is whether the necessary capability to execute their exascale challenge problems is in place at the end of the project, not the relative performance improvement throughout the project.
  • KPP-3 is used to measure the impact of both co-design software products and the projects in the ECP’s ST (software technology) scope. ECP KPP-3 impact goals and metrics are the primary high-level means of connecting ECP co-design efforts to the ECP effort as a whole. Achieving these KPP-3 impact goals defines how the ECP’s co-design centers are reviewed and how their success is determined.

The report is fairly detailed and discusses specific challenges encountered and steps taken to adapt code. Much of the work required is to implement parallelism to make more efficient use of the heterogeneous architectures and varying accelerators (Nvidia, AMD, and Intel) planned for the coming exascale systems.

Shown below are lists of applications targeting KPP-1 and KPP-2.

One interesting example is the EXAALT (Exascale Atomistic capability for Accuracy, Length and Time) project; it combines three state-of-the-art codes – LAMMPS, LATTE, and ParSplice – into a unified tool that will leverage exascale platforms across all three dimensions (ALT).

According to the report, “The new integrated capability will be composed of three software layers. First, a task management layer will enable the creation of MD tasks, their management through task queues, and the storage of results in distributed databases. It will be used to implement various replica-based Accelerated Molecular Dynamics (AMD) techniques, as well as to enable other complex MD workflows. The second layer is a powerful MD engine based on the LAMMPS code. It will offer a uniform interface through which the different physical models can be accessed. The third layer provides a wide range of physical models.”

EXAALT’s key performance parameter is for a fusion challenge problem to simulate a surface of tungsten in conditions typical of plasma-facing materials in fusion reactors. These simulations will use the Parallel Trajectory Splicing technique, as well as a hierarchy of parallelization levels (over coarse domain elements, over replicas, and over fine domain elements).

As noted by ECP, “The task management components of the calculations are very light, so will not have to be ported to the GPUs. The overwhelming majority of the flops in the calculations will be consumed carrying out molecular dynamics simulations on each worker process using the LAMMPS MD code and the SNAP model of interatomic interactions. SNAP is a new generation of machine-learned potential that promises high accuracy in exchange for a rather high computational cost. It is therefore critical to efficiently port the SNAP MD kernels to GPUs in order to achieve optimal performance.”

Here are lightly edited excerpts from the report on EXAALT’s GPU strategy and progress being made:

  • GPU Strategy. “Our main approach is to rely on the Kokkos programming model, whose development is also supported by ECP. Kokkos promises portable performance over a wide range of architectures, including Aurora and Frontier. The MD code will be fully ported to Kokkos and will therefore be able to efficiently run on GPUs. In addition, in collaboration with the CoPA (§ 8.2) co-design center and the NERSC Exascale Science Applications Program (NESAP) program at the NERSC, we are developing a suite of SNAP proxy apps (TestSNAP) implemented using different programming models, including OpenMP, CUDA, and OpenACC. This will allow us the flexibility to assess the relative merits of the different approaches and insure we have a fall-back solution in place if the deployment of a production-quality Kokkos backend on Aurora and Frontier is delayed. For example, OpenMP will be supported by all upcoming machines and the CUDA version should be convertible to the HIP runtime API relatively easily.”
  • Result so far. “Rapid progress on the development of a high-performance implementation of the SNAP kernels has been made over the last year, in preparation for early access to NERSC/Perlmutter and for upcoming exascale machines Aurora and Frontier. This work resulted from a close collaboration between EXAALT, NERSC (through the NESAP program), and CoPA.The development of this new version proceeded by the extraction of a CPU SNAP proxy-app (TestSNAP) from the LAMMPS codebase, its rewrite following the discovery of an algorithmic trick that can reduce the number of executed flops, and the restructuring of its memory layout. These improvements yielded an increase in simulation throughput of roughly 2.4× in CPU performance on the P9s of Summit. This version of TestSNAP formed the basis on the new GPU implementation of the SNAP kernels. This new implementation proceeded from scratch, completely independently of the previous Kokkos implementation. Multiple versions were developed by the team, first using OpenACC, then CUDA, and finally OpenMP offload. TestSNAP was re-engineered throughout the year, resulting in a spectacular increase in performance during the summer of 2019, from about 1 katoms-steps/wall-clock second in April to 40 katoms-steps/s in July. At this point in time, the TestSNAP implementation was ported back to a production version of LAMMPS using Kokkos. This effort yielded an increase of 5.5× in simulation throughput on the V100 of Summit, as compared to the original Kokkos implementation at the beginning of the year.”

While the latest ECP report focuses on applications, its larger mission is to ensure a full software ecosystem is ready to take advantage of the coming exascale systems.

Link to ECP report: https://www.exascaleproject.org/wp-content/uploads/2020/03/ECP_AD_Milestone-Early-Application-Results_v1.0_20200325_FINAL.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the dominant primate species, with the neanderthals disappearing b Read more…

By Oliver Peckham

Discovering Alternative Solar Panel Materials with Supercomputing

May 23, 2020

Solar power is quickly growing in the world’s energy mix, but silicon – a crucial material in the construction of photovoltaic solar panels – remains expensive, hindering solar’s expansion and competitiveness wit Read more…

By Oliver Peckham

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia said revenues for the period ended April 26 were up 39 perc Read more…

By Doug Black

TACC Supercomputers Delve into COVID-19’s Spike Protein

May 22, 2020

If you’ve been following COVID-19 research, by now, you’ve probably heard of the spike protein (or S-protein). The spike protein – which gives COVID-19 its namesake crown-like shape – is the virus’ crowbar into Read more…

By Oliver Peckham

Using HPC, Researchers Discover How Easily Hurricanes Form

May 21, 2020

Hurricane formation has long remained shrouded in mystery, with meteorologists unable to discern exactly what forces cause the devastating storms (also known as tropical cyclones) to materialize. Now, researchers at Flor Read more…

By Oliver Peckham

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Lab Behind the Record-Setting GPU ‘Cloud Burst’ Joins [email protected]’s COVID-19 Effort

May 20, 2020

Last November, the Wisconsin IceCube Particle Astrophysics Center (WIPAC) set out to break some records with a moonshot project: over a couple of hours, they bought time on as many cloud GPUS as they could – 51,000 – Read more…

By Staff report

HPC in Life Sciences 2020 Part 1: Rise of AMD, Data Management’s Wild West, More 

May 20, 2020

Given the disruption caused by the COVID-19 pandemic and the massive enlistment of major HPC resources to fight the pandemic, it is especially appropriate to re Read more…

By John Russell

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

AMD Epyc Rome Picked for New Nvidia DGX, but HGX Preserves Intel Option

May 19, 2020

AMD continues to make inroads into the datacenter with its second-generation Epyc "Rome" processor, which last week scored a win with Nvidia's announcement that Read more…

By Tiffany Trader

Hacking Streak Forces European Supercomputers Offline in Midst of COVID-19 Research Effort

May 18, 2020

This week, a number of European supercomputers discovered intrusive malware hosted on their systems. Now, in the midst of a massive supercomputing research effo Read more…

By Oliver Peckham

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Wafer-Scale Engine AI Supercomputer Is Fighting COVID-19

May 13, 2020

Seemingly every supercomputer in the world is allied in the fight against the coronavirus pandemic – but not many of them are fresh out of the box. Cerebras S Read more…

By Oliver Peckham

Startup MemVerge on Memory-centric Mission

May 12, 2020

Memory situated at the center of the computing universe, replacing processing, has long been envisioned as instrumental to radically improved datacenter systems Read more…

By Doug Black

In Australia, HPC Illuminates the Early Universe

May 11, 2020

Many billions of years ago, the universe was a swirling pool of gas. Unraveling the story of how we got from there to here isn’t an easy task, with many simul Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This