LLNL’s Jim Brase Explains How DOE Labs Are Fighting (and Coping with) COVID-19

April 14, 2020

The latest episode of the This Week in HPC podcast features Jim Brase, who works with the Computing Directorate at Lawrence Livermore National Laboratory (LLNL). Intersect360 Research’s Addison Snell spoke to Brase to discuss LLNL’s approaches to fighting COVID-19 on multiple fronts and Brase’s own workflow changes as COVID-19 forces LLNL to adjust its day-to-day operations. We present this lightly edited transcript alongside the podcast audio.

Addison Snell: Hi everyone, thanks for listening to another episode of This Week in HPC with Intersect360 Research, distributed in partnership with HPCwire. I’m Addison Snell with Intersect360 Research, and this week in HPC, I’ve got a special episode where I’m joined by Jim Brase, who’s in the Computing Directorate at Lawrence Livermore National Laboratory. Jim, thanks very much for joining me this week in HPC.

Jim Brase: Hey, happy to be here.

Snell: I really wanted to talk to you because we’ve had a huge focus, of course, worldwide, on the COVID-19 (or novel coronavirus) pandemic, and you’ve been involved in a lot of work going on in the national lab efforts as we’re trying to dedicate supercomputing resources to help scientists, epidemiologists, pharmaceutical companies, and so on in the general research battle against COVID-19. To start, can you talk about some of the myriad ways that supercomputing can get deployed that help researchers in the battle against the virus’ spread?

Brase: Computing is used almost across the board in understanding and building models for how we can respond to COVID-19. It’s used in analyzing the structure of the virus with systems like x-ray crystallography or cryo-electron microscopy; it’s used in understanding the interaction between the virus and human cells using things like molecular dynamics simulations; it’s used in identifying targets on the viral proteins or in the co-complexes of the virus with human proteins. You go from there to computational design and screening of large sets of molecules, of antibodies, vaccines, all the way to the epidemiological models, flow models of ventilator systems used in hospitals. HPC really is applied across a large area and set of applications for this.

Snell: Lawrence Livermore is one of the premier supercomputing sites in the United States. Can you talk about how Livermore is involved specifically, and how you’re involved specifically – are you touching all of these types of applications, are you specializing in any particular area? What’s going on at Livermore?

Brase: Yeah, we have several specific projects that we have started up based on work that we’ve been doing in computational biology and predictive models in biology for many years. We have work specifically on analyzing the viral proteins and trying to understand what the best spots on those proteins would be for targeting with either small molecules or antibodies. So we’ll take things like the new crystal structures that are coming out, combine that with the sequence information that we have for the virus, and build high-resolution models of specific interaction sites and so on.

Then we have a project that we’ve actually been working on for quite some time, which comes out of a partnership we’ve developed over the last five years called ATOM, which stands for “Advancing Therapeutic Opportunities in Medicine.” It’s a collaboration across a number of [Department of Energy] labs with the National Cancer Institute, GlaxoSmithKline and the University of California at San Francisco. The collaboration is really aimed at building a platform for accelerated molecular design for rapid production of medicines. So we’re actually taking a lot of the tools that we’ve developed there with focus on cancer applications (because NCI is a partner) and repurposing those tools and using them to develop potential new antiviral molecules for this outbreak. So that’s one of the major projects we have.

We’re doing large-scale screening of molecules, we’re doing optimization of the molecular structures to enhance their safety and their pharmacokinetic properties. Then ultimately we’re feeding those to newly emerging experimental capabilities — some at the National Labs, some at partners like UCSF — to actually test those and validate which designs might actually be useful for application here. So that’s another area of work.

Finally, we have a very similar project that we’re doing in the computational design of antibodies. So these are large molecules, complexes of proteins, that interact with the virus and stop its operation and can do that very effectively and rapidly. So these are designs of much larger molecules than we’re doing for the small-molecule antiviral drugs, but ones which can be produced fairly rapidly and don’t have as many of the potential safety issues and therefore can be approved faster. So working on antibody treatments like this has been a particular area of focus for us as well.

We have a number of designs ready to go on this front that are being manufactured right now, and we’re hoping to get initial experimental feedback on those antibodies as soon as the next few weeks. We’re really excited about this, and hopefully we get good results out of this – at least results that we can feed back into the designs for the next round of work. We’re pretty optimistic about that approach.

Snell: This really strikes at the heart of what’s going on with regard to the urgency in this project. Oftentimes when people talk about scientific research, there’s a lot for the good of humanity and building our general scientific knowledge that has some future benefit that we might not fully understand. But now we’re talking about a project that’s real and present in our lives right now, and we look at daily trackers that tell us how many cases, how many lives lost, and people really want scientists to catch up as fast as we can. So what’s going on now, do we have early results coming out of the lab?

Brase: Yeah, we have designs that we’ve done, we have those starting experimental testing now, so the urgency on this is very high right now. As you said, we’ve been talking about this and working on this for a number of years, in various application areas. It’s been clear to us as we’ve looked at the possible threats that face us in these areas that a pandemic infectious disease like this is a likely thing. It’s happened before, it’s happening now, it’ll happen again. Being prepared to rapidly produce specifically designed therapeutics is a capability that we really strongly need in this country and in the world to be prepared for this. Viral diseases like this will continue to emerge and we need to have the tools in place to be able to respond rapidly. 

Snell: And as we pointed out, you’ve got access to some of the most powerful supercomputing resources in the world with Sierra and other supercomputers. How subscribed are you with this kind of work right now? Are things getting reprioritized, are non-COVID-19 projects getting put on hold, where are we in supply versus demand of supercomputing power?

Brase: Lawrence Livermore and our sister DOE labs host the most powerful supercomputers in the world. We are absolutely prioritizing these systems to work on COVID-19. There’s no higher priority for our computing resources right now. I wouldn’t say we’ve stopped all the other research that we’re doing: we work on a lot of very important and high-priority national security problems at Livermore, a lot of leading-edge science problems, those are still continuing. But the teams that are working on COVID-19 response, whether it’s in specific therapeutic design, in trying to understand the function and structure of the virus – those are getting the top priority. 

Snell: You made an excellent point with regard to the importance of these applications, not only for COVID-19 but also for other application areas, like, for example, national security. I talked to Carlo Cavazzoni of CINECA in Italy a couple of weeks ago on an episode of this podcast, and he was right in the epicenter of the Italian outbreak there that was so devastating. We are in northern California which is one of the original hotspots in the United States and it’s interesting to look at how it’s affecting us both professionally and personally. What’s considered essential when it comes to Lawrence Livermore National Lab? How are things operating now? How are you coping?

Brase: As far as the lab goes, we’ve been on minimal safe operations for several weeks now where the first priority is to maintain the safety of the lab and the people who are there. We’re continuing to run our computer systems, we’re continuing to have some minimal level of lab operations, particularly in areas that are related to the COVID-19 response, and there are a few specific national security priority projects that are continuing to operate at a fairly low rate but getting the important work that they’re doing done at a reasonable level. For me personally, being in the computing department at Livermore, I can pretty much work remotely as well as I can there most of the time. But just getting used to working completely through virtual meetings and so on has been a little bit of a learning experience, and we’re looking forward to getting back to whatever the new normal will look like sometime in the next weeks and months here. 

Snell: And we’re all trying to figure out what that new normal is going to look like. It feels to me a lot like things are changing very dynamically on a daily basis — sometimes the world looks different by evening than it did first thing in the morning. How do you think this might evolve your work at Livermore over the coming weeks? I know this is also a priority at the entire DOE level, there’s a consortium evolved here. How do you see this evolving?

Brase: One thing that I hope we’ll see is a continuing prioritization of building up a sustainable capability for rapid response, having the open data and transparent research on how we design new molecules for medicines and so on. As you mentioned, this has also fostered some really new and unprecedented levels of cooperation on getting things like computing resources to groups all around the world that can take advantage of them. The DOE has really come together as part of this COVID-19 HPC Consortium to help with that. That’s something I hope is a sustainable result as well: seeing the levels of cooperation that we’re seeing between agencies, between labs and so on is great.

Snell: I’ve been speaking with Jim Brase, who’s managing multiple computing projects within the Computing Directorate at Lawrence Livermore National Laboratory. Jim, thank you very much for taking some time out of your very busy schedule to join me on the podcast today. I’ll let you get back to work, I’m very grateful for the important work that you’re helping to oversee.

Brase: My pleasure, Addison, good to talk to you. 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire