Quantum Bits: Intel Turns up the Heat; NSF, IBM, AWS, M’soft Collaborate; Q-CTRL Takes in Cash

By John Russell

April 15, 2020

Intel today reported (Nature) successful control a ‘silicon spin’ qubit at 100 degrees Kelvin – that’s a relatively balmy departure from the frigid milliKelvin environment most qubits require. Last week, the National Science Foundation and IBM, AWS, and Microsoft launched a pilot program to provide expanded access to their quantum platforms. Yesterday, quantum tool-maker Q-CTRL announced added funding from In-Q-Tel, the not-for-profit strategic investor that identifies technology solutions to support the national security communities of the U.S.

“Our demonstration of hot qubits that can operate at higher temperatures while maintaining high fidelity paves the way to allow a variety of local qubit control options without impacting qubit performance,” said Jim Clarke, director of quantum hardware, Intel Labs, in the announcement.

Given the amount of public and private effort now being poured into quantum development, it may be reasonable to expect practical advances will occur sooner rather than later – a couple of years versus a decade. Before digging into the news, here’s an interesting perspective from noted quantum researcher and blogger Scott Aaronson (UT, Austin) from an excellent talk[I] two weeks ago on quantum computing generally and Google’s work to achieve Quantum Supremacy:

Scott Aaronson, UT
Scott Aaronson, UT

“[Finding practical applications] is a major, major focus of quantum algorithms research right now because we know that we’re going to have these noisy devices with 50 or 100 or 200 qubits over the course of the next decade. And we don’t really know what they’re good for. This demonstration of quantum supremacy, which Google just did, was great, but of course it would be even better if we could do something useful.”

“I think the best shot that we have for doing something useful with these noisy near-term devices is going to be to do some kind of quantum simulation, probably of some materials of some condensed matter system. Although, [if] we’re really lucky then maybe even in chemistry. That will tell the scientists in the relevant area – the material scientists, that condensed matter physicists, the chemists – something interesting about their system that they didn’t already know. That would be a tremendously exciting next milestone. And it is possible that we could achieve that using noisy devices.”

“There’s a lot of talk about other applications for near-term quantum computers, like, for example, for optimization and machine learning. It is crucial for everyone to understand that those applications are very, very speculative, meaning that even if you have a perfect quantum computer, we still don’t know what kind of speed-ups [they] are going to give you [over classical systems].”

So is the glass half-full or half-empty?

Here’s a snapshot of the recent news:

  • Intel’s Beach Day. Until recently Intel has been fairly quiet about its quantum efforts. That’s quickly changing as it enters QC in earnest. The recent work (Universal quantum logic in hot silicon qubits), done in collaboration with QuTech, highlighted individual coherent control of two qubits with single-qubit fidelities of up to 99.3%. “These breakthroughs highlight the potential for cryogenic controls of a future quantum system and silicon spin qubits, which closely resemble a single electron transistor,” says Intel.
  • NSF et al. NSF issued a Dear Colleague letter (presented in full at end of this article) announcing it would coordinate with AWS, IBM, and Microsoft Quantum to make available cloud-based quantum-computing platforms to advance research and build capacity in the academic setting. NSF will “support supplemental funding requests for active awards to enable use of these quantum-computing cloud platforms…In parallel, Amazon Web Services, IBM, and Microsoft Quantum intend to make platform use available to recipients of these supplemental awards at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.”
  • Q-CTRL’s Growing Haul. This Australian start-up, among other things, develops firmware to help cope with the many hardware shortcomings of current quantum-based systems. The flow of funds into these kinds of companies has quickened as the solutions they deliver will prove critical in making the current generation NISQ – noisy intermediate scale quantum – computers useful. Q-CTRL says it tackles the “Achilles” heel of quantum computers. The amount of funding from In-Q-Tel wasn’t disclosed. Other investors include Sequoia Capital and Sierra Ventures, for example.

We seem to be entering a time of vigorous activity in an increasingly crowded quantum computing development community. Technology development, expanding access to existing quantum platforms, and funding from varied sources all seem to be ratchetting up. In a sense, it’s a fascinating experiment in whether crowd-sourcing in an area that once had few players will now substantially accelerate those efforts. Keeping pace with events is a challenge.

Intel Corporation has invented a spin qubit fabrication flow on its 300 mm process technology using isotopically pure wafers like this one. (Credit: Walden Kirsch/Intel Corporation)

Let’s start with Intel. One advantage it has by working with silicon dots is it leverages existing semiconductor manufacturing and packaging methods. So far Intel has said little about its quantum processor but it has suggested it too will eventually provide access via the web. The recent work QuTech[ii] demonstrates steady progress and potentially an area of advantage over competing superconducting approaches.

This from the paper’s abstract:

“[L]eading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes, gate-based spin readout and coherent single-spin control. However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin.

“We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of ‘hot’ and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.”

As Intel emphasized, “Applying quantum computing to practical problems hinges on the ability to scale to and control thousands – if not millions – of qubits at the same time with high levels of fidelity. However, current quantum systems designs are limited by overall system size, qubit fidelity and especially the complexity of control electronics required to manage the quantum at large scale. Having the control electronics and spin qubits integrated on the same chip greatly simplifies the interconnects between the two.”

The NSF initiative is broadly aimed at increasing the number of researchers tackling quantum computing and quantum information sciences broadly. Access to participating platforms is “at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.” NSF will be granting supplemental funding requests not to exceed $50,000. Including commercial companies a good idea as, at least for now, they have most of the quantum hardware resources an in the cases mentioned, established web-access methods. It seems likely other quantum platform may become available over time.

Before turning to the NSF Dear Colleague letter here’s a tidbit about Google’s Quantum Supremacy work that may amuse. You may remember the paper was “leaked” beforehand, embarrassing Google. Turns out Google was the unknowing culprit. Aaronson worked with Google on the project and recalls the turn of events.

“It was actually very funny what happened. The story leaked to the press, like a month before their paper was published in Nature. This was because NASA which has some coauthors of the work accidentally posted a draft of the paper on its public website. And then before they could take it down, Google Alerts actually found it. So, you know, Google actually undermined itself in some sense. And so this story started getting into the press. And, you know, no one knew what to make of it. And meanwhile, Google was under embargo. because, you know, because of the nature’s policies, they couldn’t comment on it,” said Aaronson.

Here is the full text of the NSF Letter:  

April 10, 2020

Dear Colleagues:

The field of quantum computing has seen substantial progress in recent years, with the development of next-generation quantum processors in the 50- to 100-qubit range. Realizing the promise of such processors requires significant capacity-building to prepare the next generation of quantum discoverers. In light of the quantum-computing developments in the private sector as well as the opportunity for further innovation in the academic setting, the National Science Foundation and Amazon Web Services, IBM, and Microsoft Quantum are coordinating to make available cloud-based quantum-computing platforms to advance research and build capacity in the academic setting. More information about the platforms is available below.

With this Dear Colleague Letter (DCL), NSF’s Directorate for Computer and Information Science and Engineering (CISE) and the Directorate for Mathematical and Physical Sciences (MPS) wish to notify the community of their intention to support supplemental funding requests for active awards to enable use of these quantum-computing cloud platforms. NSF’s supplemental funding will support graduate-student time to work on these platforms. In parallel, Amazon Web Services, IBM, and Microsoft Quantum intend to make platform use available to recipients of these supplemental awards at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.

This DCL is an initial pilot to build capacity among active NSF awardees, specifically through graduate students, to enable innovation in quantum computing. The community of CISE and MPS researchers who are not already leveraging such platforms are a particular focus for this DCL. Furthermore, publication and dissemination of research-relevant experiments, code, and tutorials are strongly encouraged to ensure broad community benefit.

Supplemental funding requests will be limited to research activities in one or more of the following research area(s):

  • Quantum algorithms and their experimental realization;
  • Quantum compiler and run-time infrastructure design;
  • Fault-tolerant computing and other methods to boost the performance of existing quantum-computing hardware;
  • Benchmarking of architectures, systems, algorithms, and scalable error-correction techniques;
  • Quantum simulations, optimizations, cryptography, and machine learning; and
  • Demonstrations of feasibility for applications of quantum algorithms.

Each PI should describe in the supplemental funding request how the work of the graduate student(s), in combination with quantum cloud platform access, will build upon and extend research activities beyond those described in the original award. Additionally, PIs should describe any prior use of such platforms, if any, and how the requested supplemental funding will build upon that prior use.

The supplemental funding request may not exceed $50,000 and is intended to support students only for a duration of up to one year. The work to be performed on the quantum computing cloud platform should be described in the request.

In the supplemental funding request, PIs must submit a (a) document detailing the technology (superconducting qubits, trapped ions, silicon spin qubits and/or microwave pulse control) and planned level of cloud resources (e.g., number of hours, number of qubits and the cloud platform(s), number of individual instance of users, and/or other metrics) and (b) letter of support from one of the three cloud providers listed above.

Prior to submission of a supplemental funding request, PIs should reach mutually agreeable terms with the cloud provider(s) noted above, in order to secure the commitment of the cloud provider(s) to enable access rights to the system. PIs selected for funding will be notified by NSF and may subsequently contact the corresponding Point of Contact (PoC) listed below to initiate access. PIs may also contact these individuals at Amazon Web Services, IBM, and Microsoft Quantum with questions regarding the platform and resources offered, and should work with them to secure the letter of support that must be included in the supplemental funding request.

  • Sanjay Padhi, Amazon Web Services, email: sanpadhi@amazon.com
  • Sebastian Hassinger, IBM, email: Sebastian.Hassinger@ibm.com
  • Linda Lauw, Microsoft Quantum, email: llauw@microsoft.com

For all NSF awards, grantees must submit annual project reports to NSF. In addition to the standard requirements, annual reports must provide a detailed accounting of the project’s use of quantum cloud resources and students’ time.

Supplemental funding requests pursuant to this DCL are welcome through June 18, 2020, but earlier submissions are encouraged. This opportunity is open to PIs and co-PIs with active awards from the research areas described in this DCL. Requests should be prepared in accordance with the guidance in Chapter VI.E.4 of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) and submitted electronically via the NSF FastLane system. NSF will manage the review of supplemental funding requests. Amazon Web Services, IBM, and Microsoft Quantum will have no role in the review and selection process, and proposals will not be shared with Amazon Web Services, IBM, or Microsoft Quantum.

NSF will notify PIs selected for funding, at which point PIs should re-engage as negotiated with the Amazon Web Services, IBM, and Microsoft Quantum PoCs above to begin using the resources described in the proposal.

PIs interested in submitting supplemental funding requests or with questions pertaining to this DCL are strongly encouraged to contact one of the following program directors prior to submitting:

  • Almadena Chtchelkanova, Program Director, CISE, telephone: (703)-292-7498, email: achtchel@nsf.gov
  • Vipin Chaudhary, Program Director, CISE, telephone: (703) 292-2254, email: vipchaud@nsf.gov
  • Bogdan Mihaila, Program Director, MPS, telephone: (703) 292-8235, email: bmihaila@nsf.gov
  • Richard Dawes, Program Director, MPS, telephone: (703) 292-7486, email: rdawes@nsf.gov
  • Yulia Gorb, Program Director, MPS, telephone: (703) 292-2113, email: ygorb@nsf.gov


Margaret Martonosi
Assistant Director, CISE

Anne Kinney
Assistant Director, MPS

[i]Supercomputing Frontiers Europe/Virtual ICM Seminar, April 1, 2020, https://supercomputingfrontiers.eu/2020/virtual-icm-seminars-in-computer-and-computational-science/

[ii]QuTech is the advanced research center for Quantum Computing and Quantum Internet, a collaboration founded in 2014 by Delft University of Technology (TU Delft) and the Netherlands Organisation for Applied Scientific Research (TNO)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers


Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow