Quantum Bits: Intel Turns up the Heat; NSF, IBM, AWS, M’soft Collaborate; Q-CTRL Takes in Cash

By John Russell

April 15, 2020

Intel today reported (Nature) successful control a ‘silicon spin’ qubit at 100 degrees Kelvin – that’s a relatively balmy departure from the frigid milliKelvin environment most qubits require. Last week, the National Science Foundation and IBM, AWS, and Microsoft launched a pilot program to provide expanded access to their quantum platforms. Yesterday, quantum tool-maker Q-CTRL announced added funding from In-Q-Tel, the not-for-profit strategic investor that identifies technology solutions to support the national security communities of the U.S.

“Our demonstration of hot qubits that can operate at higher temperatures while maintaining high fidelity paves the way to allow a variety of local qubit control options without impacting qubit performance,” said Jim Clarke, director of quantum hardware, Intel Labs, in the announcement.

Given the amount of public and private effort now being poured into quantum development, it may be reasonable to expect practical advances will occur sooner rather than later – a couple of years versus a decade. Before digging into the news, here’s an interesting perspective from noted quantum researcher and blogger Scott Aaronson (UT, Austin) from an excellent talk[I] two weeks ago on quantum computing generally and Google’s work to achieve Quantum Supremacy:

Scott Aaronson, UT
Scott Aaronson, UT

“[Finding practical applications] is a major, major focus of quantum algorithms research right now because we know that we’re going to have these noisy devices with 50 or 100 or 200 qubits over the course of the next decade. And we don’t really know what they’re good for. This demonstration of quantum supremacy, which Google just did, was great, but of course it would be even better if we could do something useful.”

“I think the best shot that we have for doing something useful with these noisy near-term devices is going to be to do some kind of quantum simulation, probably of some materials of some condensed matter system. Although, [if] we’re really lucky then maybe even in chemistry. That will tell the scientists in the relevant area – the material scientists, that condensed matter physicists, the chemists – something interesting about their system that they didn’t already know. That would be a tremendously exciting next milestone. And it is possible that we could achieve that using noisy devices.”

“There’s a lot of talk about other applications for near-term quantum computers, like, for example, for optimization and machine learning. It is crucial for everyone to understand that those applications are very, very speculative, meaning that even if you have a perfect quantum computer, we still don’t know what kind of speed-ups [they] are going to give you [over classical systems].”

So is the glass half-full or half-empty?

Here’s a snapshot of the recent news:

  • Intel’s Beach Day. Until recently Intel has been fairly quiet about its quantum efforts. That’s quickly changing as it enters QC in earnest. The recent work (Universal quantum logic in hot silicon qubits), done in collaboration with QuTech, highlighted individual coherent control of two qubits with single-qubit fidelities of up to 99.3%. “These breakthroughs highlight the potential for cryogenic controls of a future quantum system and silicon spin qubits, which closely resemble a single electron transistor,” says Intel.
  • NSF et al. NSF issued a Dear Colleague letter (presented in full at end of this article) announcing it would coordinate with AWS, IBM, and Microsoft Quantum to make available cloud-based quantum-computing platforms to advance research and build capacity in the academic setting. NSF will “support supplemental funding requests for active awards to enable use of these quantum-computing cloud platforms…In parallel, Amazon Web Services, IBM, and Microsoft Quantum intend to make platform use available to recipients of these supplemental awards at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.”
  • Q-CTRL’s Growing Haul. This Australian start-up, among other things, develops firmware to help cope with the many hardware shortcomings of current quantum-based systems. The flow of funds into these kinds of companies has quickened as the solutions they deliver will prove critical in making the current generation NISQ – noisy intermediate scale quantum – computers useful. Q-CTRL says it tackles the “Achilles” heel of quantum computers. The amount of funding from In-Q-Tel wasn’t disclosed. Other investors include Sequoia Capital and Sierra Ventures, for example.

We seem to be entering a time of vigorous activity in an increasingly crowded quantum computing development community. Technology development, expanding access to existing quantum platforms, and funding from varied sources all seem to be ratchetting up. In a sense, it’s a fascinating experiment in whether crowd-sourcing in an area that once had few players will now substantially accelerate those efforts. Keeping pace with events is a challenge.

Intel Corporation has invented a spin qubit fabrication flow on its 300 mm process technology using isotopically pure wafers like this one. (Credit: Walden Kirsch/Intel Corporation)

Let’s start with Intel. One advantage it has by working with silicon dots is it leverages existing semiconductor manufacturing and packaging methods. So far Intel has said little about its quantum processor but it has suggested it too will eventually provide access via the web. The recent work QuTech[ii] demonstrates steady progress and potentially an area of advantage over competing superconducting approaches.

This from the paper’s abstract:

“[L]eading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes, gate-based spin readout and coherent single-spin control. However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin.

“We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of ‘hot’ and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.”

As Intel emphasized, “Applying quantum computing to practical problems hinges on the ability to scale to and control thousands – if not millions – of qubits at the same time with high levels of fidelity. However, current quantum systems designs are limited by overall system size, qubit fidelity and especially the complexity of control electronics required to manage the quantum at large scale. Having the control electronics and spin qubits integrated on the same chip greatly simplifies the interconnects between the two.”

The NSF initiative is broadly aimed at increasing the number of researchers tackling quantum computing and quantum information sciences broadly. Access to participating platforms is “at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.” NSF will be granting supplemental funding requests not to exceed $50,000. Including commercial companies a good idea as, at least for now, they have most of the quantum hardware resources an in the cases mentioned, established web-access methods. It seems likely other quantum platform may become available over time.

Before turning to the NSF Dear Colleague letter here’s a tidbit about Google’s Quantum Supremacy work that may amuse. You may remember the paper was “leaked” beforehand, embarrassing Google. Turns out Google was the unknowing culprit. Aaronson worked with Google on the project and recalls the turn of events.

“It was actually very funny what happened. The story leaked to the press, like a month before their paper was published in Nature. This was because NASA which has some coauthors of the work accidentally posted a draft of the paper on its public website. And then before they could take it down, Google Alerts actually found it. So, you know, Google actually undermined itself in some sense. And so this story started getting into the press. And, you know, no one knew what to make of it. And meanwhile, Google was under embargo. because, you know, because of the nature’s policies, they couldn’t comment on it,” said Aaronson.

Here is the full text of the NSF Letter:  

April 10, 2020

Dear Colleagues:

The field of quantum computing has seen substantial progress in recent years, with the development of next-generation quantum processors in the 50- to 100-qubit range. Realizing the promise of such processors requires significant capacity-building to prepare the next generation of quantum discoverers. In light of the quantum-computing developments in the private sector as well as the opportunity for further innovation in the academic setting, the National Science Foundation and Amazon Web Services, IBM, and Microsoft Quantum are coordinating to make available cloud-based quantum-computing platforms to advance research and build capacity in the academic setting. More information about the platforms is available below.

With this Dear Colleague Letter (DCL), NSF’s Directorate for Computer and Information Science and Engineering (CISE) and the Directorate for Mathematical and Physical Sciences (MPS) wish to notify the community of their intention to support supplemental funding requests for active awards to enable use of these quantum-computing cloud platforms. NSF’s supplemental funding will support graduate-student time to work on these platforms. In parallel, Amazon Web Services, IBM, and Microsoft Quantum intend to make platform use available to recipients of these supplemental awards at no financial cost, pending a mutually agreeable arrangement between the principal investigators (PIs) and a given company.

This DCL is an initial pilot to build capacity among active NSF awardees, specifically through graduate students, to enable innovation in quantum computing. The community of CISE and MPS researchers who are not already leveraging such platforms are a particular focus for this DCL. Furthermore, publication and dissemination of research-relevant experiments, code, and tutorials are strongly encouraged to ensure broad community benefit.

Supplemental funding requests will be limited to research activities in one or more of the following research area(s):

  • Quantum algorithms and their experimental realization;
  • Quantum compiler and run-time infrastructure design;
  • Fault-tolerant computing and other methods to boost the performance of existing quantum-computing hardware;
  • Benchmarking of architectures, systems, algorithms, and scalable error-correction techniques;
  • Quantum simulations, optimizations, cryptography, and machine learning; and
  • Demonstrations of feasibility for applications of quantum algorithms.

Each PI should describe in the supplemental funding request how the work of the graduate student(s), in combination with quantum cloud platform access, will build upon and extend research activities beyond those described in the original award. Additionally, PIs should describe any prior use of such platforms, if any, and how the requested supplemental funding will build upon that prior use.

The supplemental funding request may not exceed $50,000 and is intended to support students only for a duration of up to one year. The work to be performed on the quantum computing cloud platform should be described in the request.

In the supplemental funding request, PIs must submit a (a) document detailing the technology (superconducting qubits, trapped ions, silicon spin qubits and/or microwave pulse control) and planned level of cloud resources (e.g., number of hours, number of qubits and the cloud platform(s), number of individual instance of users, and/or other metrics) and (b) letter of support from one of the three cloud providers listed above.

Prior to submission of a supplemental funding request, PIs should reach mutually agreeable terms with the cloud provider(s) noted above, in order to secure the commitment of the cloud provider(s) to enable access rights to the system. PIs selected for funding will be notified by NSF and may subsequently contact the corresponding Point of Contact (PoC) listed below to initiate access. PIs may also contact these individuals at Amazon Web Services, IBM, and Microsoft Quantum with questions regarding the platform and resources offered, and should work with them to secure the letter of support that must be included in the supplemental funding request.

For all NSF awards, grantees must submit annual project reports to NSF. In addition to the standard requirements, annual reports must provide a detailed accounting of the project’s use of quantum cloud resources and students’ time.

Supplemental funding requests pursuant to this DCL are welcome through June 18, 2020, but earlier submissions are encouraged. This opportunity is open to PIs and co-PIs with active awards from the research areas described in this DCL. Requests should be prepared in accordance with the guidance in Chapter VI.E.4 of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) and submitted electronically via the NSF FastLane system. NSF will manage the review of supplemental funding requests. Amazon Web Services, IBM, and Microsoft Quantum will have no role in the review and selection process, and proposals will not be shared with Amazon Web Services, IBM, or Microsoft Quantum.

NSF will notify PIs selected for funding, at which point PIs should re-engage as negotiated with the Amazon Web Services, IBM, and Microsoft Quantum PoCs above to begin using the resources described in the proposal.

PIs interested in submitting supplemental funding requests or with questions pertaining to this DCL are strongly encouraged to contact one of the following program directors prior to submitting:

  • Almadena Chtchelkanova, Program Director, CISE, telephone: (703)-292-7498, email: [email protected]
  • Vipin Chaudhary, Program Director, CISE, telephone: (703) 292-2254, email: [email protected]
  • Bogdan Mihaila, Program Director, MPS, telephone: (703) 292-8235, email: [email protected]
  • Richard Dawes, Program Director, MPS, telephone: (703) 292-7486, email: [email protected]
  • Yulia Gorb, Program Director, MPS, telephone: (703) 292-2113, email: [email protected]

Sincerely,

Margaret Martonosi
Assistant Director, CISE

Anne Kinney
Assistant Director, MPS

[i]Supercomputing Frontiers Europe/Virtual ICM Seminar, April 1, 2020, https://supercomputingfrontiers.eu/2020/virtual-icm-seminars-in-computer-and-computational-science/

[ii]QuTech is the advanced research center for Quantum Computing and Quantum Internet, a collaboration founded in 2014 by Delft University of Technology (TU Delft) and the Netherlands Organisation for Applied Scientific Research (TNO)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This