Cooling for Maximal High-bandwidth Processor Performance and a Bellwether Cluster Deployment

By Rob Farber

April 17, 2020

Heat and the impact of high processor memory bandwidth are key factors that must be considered when procuring a cluster that can realize the full potential of the latest generation of high memory bandwidth processors. System designers must address this dilemma as CPU vendors are now competing over memory bandwidth to achieve leadership application performance. High memory bandwidth is an extraordinary boon for all users as it means higher application performance – so long as more efficient use of the vector floating-point units does not cause the processor to overheat and reduce performance.

Thermal issues affect everyone

Everyone is affected by the heat versus memory bandwidth dilemma, as even small-scale workloads (by current standards) can experience downclocking. This means the every HPC and enterprise deployment is caught in this dilemma, regardless of whether the system is a small organizational cluster, large commercial enterprise datacenter, dedicated AI workhorse cluster, or an academic group or campus-wide datacenter.

HPE notes, “A system’s “high performance” claims may look impressive on paper. However, their real-world performance results can lag very far behind. For instance, as HPC clusters tune groups of cores to their own unique frequencies, temperature, and power regulation; competing groups can overthrow the system’s actual performance.” [i]

AI and tightly coupled HPC applications running at scale are particularly susceptible to performance degradation from heat-related issues such as thermal downclocking. Basically, tightly coupled applications including those that use reduction type operations (essential to AI training, common in most HPC applications) become rate limited by the slowest node(s) when processors run at different rates.

Good system design and system management are key to eliminating heat-related issues – as they will likely affect the performance of every application on the system – which in turn lets applications run faster due to the greater parallelism, floating-point capability and memory bandwidth of the latest modern processors.

Preserving high-bandwidth CPU performance

To understand the impact of heat on high memory-bandwidth system performance, we look at the Magma installation at bellwether LLNL (Lawrence Livermore National Laboratory). Magma employs Intel Xeon Platinum 9200 liquid-cooled SKUs. We focus on these SKUs because they currently provide the highest number of memory channels per CPU, and they provide very high floating-point performance with dual per-core AVX-512 vector units which generate heat when fully utilized. Thus, they provide a glimpse into our high-bandwidth CPU future.

High bandwidth processors are the future

Higher memory bandwidth is critical to performance for many HPC and AI workloads; processor cores that are starved for data simply don’t deliver performance.

Figure 1 (below) shows that the new 9200 12-channel processors provide better performance when compared against other Intel six memory channel per socket processors.

Figure 1: Comparison of the 6 channel and 12 channel Intel processors. The Intel Xeon Platinum 8760 has 24 cores while the Intel Xeon E5-2697 v4 has 18 cores. Thus any performance over the core count ratio of 1.3 can be attributed to the memory system and not just the greater core count. Meanwhile the performance of the Intel Platinum 9242, a 48 core chip, generally show a 2x performance increase over the Intel Xeon Platinum 8760 which indicates the additional cores are not starved for data.  (Image courtesy Intel)

Guideline: Air-cooling vs. Liquid-cooling

While increased memory bandwidth translates to faster application performance, it also creates a dilemma for systems designers as the heat generated when running all the cores and dual floating-point units in a high core-count processor at full speed can cause the chip to slow down (downclock) to stay within its thermal design limits.

Look closely the TDP (Thermal Design Power) ratings to understand when it becomes necessary to consider liquid cooling. As a guideline, think: the more cores, the higher the TDP and the greater the importance of the cooling solution. Also, consider that most compute nodes run dual-socket, so these TDP numbers must be doubled for all 2S computational nodes.

Air-cooling is fine for many HPC and data intensive HPDA workloads that perform many floating-point operations so long as there is sufficient air-flow to keep the processor(s) cool.

Liquid-cooling solves many thermal issues

In contrast, look to liquid cooling when running highly parallel, floating-point intensive vector codes that are cache intensive. DGEMM (double- precision general matrix multiplication) operations are the textbook example because such dense matrix operations can scale to all the processor cores on a chip and keep all the floating-point units active.

Figure 2: A 1U 9200WK liquid-cooled node (Image courtesy Intel)

As always, look to your workloads. If they reflect LINPACK benchmark behavior, then liquid cooling is the best way to keep all parts of the chip within thermal limits to achieve full performance. Otherwise, the processor may have to downclock to stay within its thermal envelope, thus decreasing performance.

Don’t forget to consider the impact of thermal issues when running at scale!

In particular, look at the proximity of vector intensive dense matrix operations relative to tightly coupled distributed operations such as a reduction operator. Hot nodes in air cooled systems are known to slow tightly coupled computations significantly, by a factor of two or more. [ii]  Essentially the distributed computation becomes rate limited by the slowest node(s). The impact of hot nodes can be observed at scale – even when running small scale jobs using on a few hundred nodes.[iii] Liquid cooling eliminates the problem of hot nodes.

LLNL Magma system

Funded through NNSA’s Advanced Simulation & Computing (ASC) program, the Magma supercomputer is a liquid-cooled supercomputer designed to support mission simulations critical to ensuring the safety, security and reliability of the nation’s nuclear weapons in the absence of underground testing. As of November 2019, Magma is ranked as the 69th fastest system in the world according to the Top500 list.

Magma consists of 760 compute nodes, with each node each configured with dual 12-memory channel per socket Xeon Platinum 9242 48-core processors — for a total of 72,960 cores. Its total memory capacity is 293 terabytes, with a total memory bandwidth of 430 terabytes per second. The cluster utilizes Penguin’s Relion XE2142eAP compute servers connected by an Intel Omni-Path interconnect. The system is supported by CoolIT Systems’ complete direct liquid cooling solution. [iv]

The physical reality of floating-point arithmetic

It’s unavoidable—floating-point arithmetic operations generate heat. This is exacerbated by wider vector units (meaning more operations can be performed per second) and the multiple per-core vector units that now co-exist alongside modern CPU cores.

Much software analysis has been performed to reduce the impact of downclocking when running floating-point intensive codes in software, [v] but the easiest solution is to exploit the greater thermal conductivity of liquid to remove heat.

Of course, cost, complexity and the practicality of installing plumbing in the datacenter may become an issue when considering liquid cooling. However, standardized full-service liquid providers along with broad support for a multitude of OEMs and various hyperscaler partners make it easier to implement standardized liquid cooling solutions.

You can see the dilemma caused when more data lets more of the vector units in a processor stay busy, which in turn generates more heat. Liquid has better thermal conductivity than air, so if your system workload tends to be dominated by floating-point calculations (easily determined by application profiling) then liquid cooling might be required.

Summary

The key takeaway is that higher memory bandwidth processors are a very good thing. Don’t starve your computing hardware for data. However, higher work efficiency in the processor does create a cooling dilemma.

Check your workloads to see if air cooling is still an option, or if your users would be better served with a liquid cooled solution. It might prove to take less room, operate more efficiently, and deliver higher performance on each node and when running tightly coupled applications at scale.

Rob Farber is a global technology consultant and author with an extensive background in HPC, AI, and teaching. Rob can be reached at [email protected].

[i] https://assets.ext.hpe.com/is/content/hpedam/documents/a00042000-2999/a00042027/a00042027enw.pdf

[ii] https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-03-3116

[iii] ibid

[iv] https://www.llnl.gov/news/penguinintel-magma-computing-cluster-coming-llnl

[v] https://arxiv.org/pdf/1901.04982.pdf

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire