‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

By Oliver Peckham

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in history. Now, a new competition from the Joint European Disruptive Initiative (JEDI) is poised to raise the bar even higher, aiming to recruit up to a hundred teams to crunch billions of molecules in the hunt for a COVID-19 therapeutic – and offering millions of euros in prizes. In an interview with HPCwire, JEDI’s founder, André Loesekrug-Pietri, spoke about the structure and goals of the ambitious, supercomputing-powered challenge.

JEDI, a foundation that aims to be the “European DARPA” and a “moonshot factory,” typically looks to the future, focusing on longer-term projects that are years away and haven’t received funding or scientific attention commensurate to their social impacts. But with the advent of COVID-19, JEDI found itself working distinctly in the present – and hunting for a way to create value added in a crowded research field.

“A couple of weeks ago, we brought together all those people who are involved in the broader healthcare sector, trying to understand: okay, what could be our added value in this global crisis?” Loesekrug-Pietri said. The experts indicated that research was focusing too much on individual molecules – such as hydroxychloroquine – and there, JEDI saw an opening. 

“Why don’t we use the capacity that HPC is giving us today? And why don’t we, on top of that, bring in people coming from ML and artificial intelligence to try to optimize these calculations?” Loesekrug-Pietri said. “And so we framed a challenge around: can we screen, to a level unprecedented before, … for an interaction either destructive or ameliorating [to] the coronavirus?”

The Billion Molecules Against COVID-19 Grand Challenge

It’s a catchy headline: a billion molecules. The name, however, might actually be underselling the ambition of the competition. “Every team needs to come up with a billion molecules,” Loesekrug-Pietri explained. In the first stage of the challenge, each of the teams (Loesekrug-Pietri expects that around 50 to 100 teams will have the capacity to compete) will be tasked with screening those billion molecules for their affinity with COVID-19 using three different screening methods. The objective: to identify molecules with strong binding potentials (within 100 nanomolar) that can advance to the second stage of the challenge.

André Loesekrug-Pietri, founder of JEDI.

“The uniqueness here, also a little bit inspired by climate models, is not just to have everybody come up with their own solution, but requesting that all teams come up with three different methods to screen these molecules on their binding affinity,” Loesekrug-Pietri said. Between the first and second stages of the competition, JEDI will take advantage of the medley of results produced by many teams using many approaches by cross-correlating the results from all the teams to produce a so-called “ultimate list.” “By cross-correlating these methodologies, you basically leverage out biases or errors,” Loesekrug-Pietri said, explaining that most researchers don’t cross-correlate their results internally – let alone with international teams using radically different methods.

The second stage, Loesekrug-Pietri said, is all about reducing the viral load, with the aim of reducing it by 99 percent. “We will ask the teams again to come up with very creative virology calculation methodologies using predictive algorithms to be able to pinpoint which of the compounds they want to test in terms of viral discharge,” he said. “We are then going to synthesize these ultimate compounds to go to stage two in order to really test. Because otherwise, you remain very theoretical, which is a really great step, but then you need to test it on real molecules.” The most promising candidate molecules in the ultimate list will be synthesized – if possible – and their potential to reduce viral load will be tested in the real world. “If you have affinity plus viral discharge,” Loesekrug-Pietri said, “then you are up to something really powerful.”

The third and final stage will focus on testing existing real-world therapeutics. “Stage three is basically one and two together, plus using that on existing FDA-approved drugs,” Loesekrug-Pietri said. JEDI, he explained, wanted to zero in on any and all drugs that researchers may have overlooked. “Here, we basically want to create serendipity and force people to also check on all the molecules where we already know the toxicity and where basically we can go directly into animal testing,” he said. After feedback from the scientific community, the third stage will also incorporate drug cocktails. “Look at how HIV went,” Loesekrug-Pietri said. “It took us 25 years to go from testing individual drugs, and today, the things that work are cocktails of up to ten different drugs that need to be taken in different phases.”

The supercomputing firepower

To enable the teams to conduct their research, JEDI has brought together a broad coalition of high-profile supercomputing and science organizations. HPC resources are being provided by GENCI, the French national high-performance computing organization; the Partnership for Advanced Computing in Europe (PRACE); and Deutsche Telekom (which Loesekrug-Pietri said is committing all of its CPU and GPU resources), among others.

JEDI is also working to distribute the resources evenly among participants. “What we’re currently building,” Loesekrug-Pietri explained, “is an interface where basically the participant can tap directly into these resources and request a certain number of hours – millions of core hours, probably – and it will distribute it by doing a bit of load balancing, if I can call it that.”

However, Loesekrug-Pietri isn’t even sure that load balancing will be necessary. “We have, probably, enough resources ourselves, but it’s very difficult to estimate – it will really be depending on the methods that people will use,” he said, adding that machine learning approaches can sometimes offer 30-fold speedups relative to brute force computing, complicating total demand estimates. In terms of capacity, Loesekrug-Pietri said that JEDI is aiming for “not unlimited, but close.” “We are in the tens, if not in the hundreds of millions of core hours,” he said.

Crowdsourced computing powerhouse [email protected] is working closely with JEDI, helping to provide targets for researchers to assail with candidate molecules. “The more targets we have on which teams will be able to run their billion compounds,” Loesekrug-Pietri said, “the more combinations of keys and locks. You can imagine that these become numbers which are just absolutely massive.” [email protected]’s John Chodera has joined the challenge’s scientific committee, which also includes leaders from a wide range of universities, research institutes and supercomputing centers.

Looking ahead

The challenge launches on May 1st. Loesekrug-Pietri estimates that the first two stages will each take around four weeks, with a couple of weeks between them to allow for cross-correlation of the lists. Stage three, however, may coexist with the other stages, depending on how teams are progressing through the challenge. Either way, Loesekrug-Pietri said, “we are looking for results before the end of June.” The challenge, he added, was built as open science, and participants will deposit their results into public libraries to aid global efforts against COVID-19.

“We think that we can probably … be much faster in this very long traditional testing phase without cutting corners,” Loesekrug-Pietri said. “By cross-correlating, by using this massive screening, we are able actually to automate a lot of the steps that today are the reasons why these clinical tests are so long – because they’re all very sequential. We’re trying to do a lot of things running in parallel.”

For JEDI, of course, the goal is to achieve a COVID-19 moonshot. “We already have high hopes that this will be a massive breakthrough,” Loesekrug-Pietri said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this year and double again by the end of next year as it transiti Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this Read more…

By John Russell

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This