‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

By Oliver Peckham

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in history. Now, a new competition from the Joint European Disruptive Initiative (JEDI) is poised to raise the bar even higher, aiming to recruit up to a hundred teams to crunch billions of molecules in the hunt for a COVID-19 therapeutic – and offering millions of euros in prizes. In an interview with HPCwire, JEDI’s founder, André Loesekrug-Pietri, spoke about the structure and goals of the ambitious, supercomputing-powered challenge.

JEDI, a foundation that aims to be the “European DARPA” and a “moonshot factory,” typically looks to the future, focusing on longer-term projects that are years away and haven’t received funding or scientific attention commensurate to their social impacts. But with the advent of COVID-19, JEDI found itself working distinctly in the present – and hunting for a way to create value added in a crowded research field.

“A couple of weeks ago, we brought together all those people who are involved in the broader healthcare sector, trying to understand: okay, what could be our added value in this global crisis?” Loesekrug-Pietri said. The experts indicated that research was focusing too much on individual molecules – such as hydroxychloroquine – and there, JEDI saw an opening. 

“Why don’t we use the capacity that HPC is giving us today? And why don’t we, on top of that, bring in people coming from ML and artificial intelligence to try to optimize these calculations?” Loesekrug-Pietri said. “And so we framed a challenge around: can we screen, to a level unprecedented before, … for an interaction either destructive or ameliorating [to] the coronavirus?”

The Billion Molecules Against COVID-19 Grand Challenge

It’s a catchy headline: a billion molecules. The name, however, might actually be underselling the ambition of the competition. “Every team needs to come up with a billion molecules,” Loesekrug-Pietri explained. In the first stage of the challenge, each of the teams (Loesekrug-Pietri expects that around 50 to 100 teams will have the capacity to compete) will be tasked with screening those billion molecules for their affinity with COVID-19 using three different screening methods. The objective: to identify molecules with strong binding potentials (within 100 nanomolar) that can advance to the second stage of the challenge.

André Loesekrug-Pietri, founder of JEDI.

“The uniqueness here, also a little bit inspired by climate models, is not just to have everybody come up with their own solution, but requesting that all teams come up with three different methods to screen these molecules on their binding affinity,” Loesekrug-Pietri said. Between the first and second stages of the competition, JEDI will take advantage of the medley of results produced by many teams using many approaches by cross-correlating the results from all the teams to produce a so-called “ultimate list.” “By cross-correlating these methodologies, you basically leverage out biases or errors,” Loesekrug-Pietri said, explaining that most researchers don’t cross-correlate their results internally – let alone with international teams using radically different methods.

The second stage, Loesekrug-Pietri said, is all about reducing the viral load, with the aim of reducing it by 99 percent. “We will ask the teams again to come up with very creative virology calculation methodologies using predictive algorithms to be able to pinpoint which of the compounds they want to test in terms of viral discharge,” he said. “We are then going to synthesize these ultimate compounds to go to stage two in order to really test. Because otherwise, you remain very theoretical, which is a really great step, but then you need to test it on real molecules.” The most promising candidate molecules in the ultimate list will be synthesized – if possible – and their potential to reduce viral load will be tested in the real world. “If you have affinity plus viral discharge,” Loesekrug-Pietri said, “then you are up to something really powerful.”

The third and final stage will focus on testing existing real-world therapeutics. “Stage three is basically one and two together, plus using that on existing FDA-approved drugs,” Loesekrug-Pietri said. JEDI, he explained, wanted to zero in on any and all drugs that researchers may have overlooked. “Here, we basically want to create serendipity and force people to also check on all the molecules where we already know the toxicity and where basically we can go directly into animal testing,” he said. After feedback from the scientific community, the third stage will also incorporate drug cocktails. “Look at how HIV went,” Loesekrug-Pietri said. “It took us 25 years to go from testing individual drugs, and today, the things that work are cocktails of up to ten different drugs that need to be taken in different phases.”

The supercomputing firepower

To enable the teams to conduct their research, JEDI has brought together a broad coalition of high-profile supercomputing and science organizations. HPC resources are being provided by GENCI, the French national high-performance computing organization; the Partnership for Advanced Computing in Europe (PRACE); and Deutsche Telekom (which Loesekrug-Pietri said is committing all of its CPU and GPU resources), among others.

JEDI is also working to distribute the resources evenly among participants. “What we’re currently building,” Loesekrug-Pietri explained, “is an interface where basically the participant can tap directly into these resources and request a certain number of hours – millions of core hours, probably – and it will distribute it by doing a bit of load balancing, if I can call it that.”

However, Loesekrug-Pietri isn’t even sure that load balancing will be necessary. “We have, probably, enough resources ourselves, but it’s very difficult to estimate – it will really be depending on the methods that people will use,” he said, adding that machine learning approaches can sometimes offer 30-fold speedups relative to brute force computing, complicating total demand estimates. In terms of capacity, Loesekrug-Pietri said that JEDI is aiming for “not unlimited, but close.” “We are in the tens, if not in the hundreds of millions of core hours,” he said.

Crowdsourced computing powerhouse [email protected] is working closely with JEDI, helping to provide targets for researchers to assail with candidate molecules. “The more targets we have on which teams will be able to run their billion compounds,” Loesekrug-Pietri said, “the more combinations of keys and locks. You can imagine that these become numbers which are just absolutely massive.” [email protected]’s John Chodera has joined the challenge’s scientific committee, which also includes leaders from a wide range of universities, research institutes and supercomputing centers.

Looking ahead

The challenge launches on May 1st. Loesekrug-Pietri estimates that the first two stages will each take around four weeks, with a couple of weeks between them to allow for cross-correlation of the lists. Stage three, however, may coexist with the other stages, depending on how teams are progressing through the challenge. Either way, Loesekrug-Pietri said, “we are looking for results before the end of June.” The challenge, he added, was built as open science, and participants will deposit their results into public libraries to aid global efforts against COVID-19.

“We think that we can probably … be much faster in this very long traditional testing phase without cutting corners,” Loesekrug-Pietri said. “By cross-correlating, by using this massive screening, we are able actually to automate a lot of the steps that today are the reasons why these clinical tests are so long – because they’re all very sequential. We’re trying to do a lot of things running in parallel.”

For JEDI, of course, the goal is to achieve a COVID-19 moonshot. “We already have high hopes that this will be a massive breakthrough,” Loesekrug-Pietri said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training results (July 2020), it was almost entirely The Nvidia Show, a p Read more…

By John Russell

With Optane Gaining, Intel Exits NAND Flash

October 21, 2020

In a sign that its 3D XPoint memory technology is gaining traction, Intel Corp. is departing the NAND flash memory and storage market with the sale of its manufacturing base in China to SK Hynix of South Korea. The $9 Read more…

By George Leopold

AWS Solution Channel

Live Webinar: AWS & Intel Research Webinar Series – Fast scaling research workloads on the cloud

Date: 27 Oct – 5 Nov

Join us for the AWS and Intel Research Webinar series.

You will learn how we help researchers process complex workloads, quickly analyze massive data pipelines, store petabytes of data, and advance research using transformative technologies. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing another major EuroHPC design win. Finnish supercomputing cent Read more…

By Oliver Peckham

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

ROI: Is HPC Worth It? What Can We Actually Measure?

October 15, 2020

HPC enables innovation and discovery. We all seem to agree on that. Is there a good way to quantify how much that’s worth? Thanks to a sponsored white pape Read more…

By Addison Snell, Intersect360 Research

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This