‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

By Oliver Peckham

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in history. Now, a new competition from the Joint European Disruptive Initiative (JEDI) is poised to raise the bar even higher, aiming to recruit up to a hundred teams to crunch billions of molecules in the hunt for a COVID-19 therapeutic – and offering millions of euros in prizes. In an interview with HPCwire, JEDI’s founder, André Loesekrug-Pietri, spoke about the structure and goals of the ambitious, supercomputing-powered challenge.

JEDI, a foundation that aims to be the “European DARPA” and a “moonshot factory,” typically looks to the future, focusing on longer-term projects that are years away and haven’t received funding or scientific attention commensurate to their social impacts. But with the advent of COVID-19, JEDI found itself working distinctly in the present – and hunting for a way to create value added in a crowded research field.

“A couple of weeks ago, we brought together all those people who are involved in the broader healthcare sector, trying to understand: okay, what could be our added value in this global crisis?” Loesekrug-Pietri said. The experts indicated that research was focusing too much on individual molecules – such as hydroxychloroquine – and there, JEDI saw an opening. 

“Why don’t we use the capacity that HPC is giving us today? And why don’t we, on top of that, bring in people coming from ML and artificial intelligence to try to optimize these calculations?” Loesekrug-Pietri said. “And so we framed a challenge around: can we screen, to a level unprecedented before, … for an interaction either destructive or ameliorating [to] the coronavirus?”

The Billion Molecules Against COVID-19 Grand Challenge

It’s a catchy headline: a billion molecules. The name, however, might actually be underselling the ambition of the competition. “Every team needs to come up with a billion molecules,” Loesekrug-Pietri explained. In the first stage of the challenge, each of the teams (Loesekrug-Pietri expects that around 50 to 100 teams will have the capacity to compete) will be tasked with screening those billion molecules for their affinity with COVID-19 using three different screening methods. The objective: to identify molecules with strong binding potentials (within 100 nanomolar) that can advance to the second stage of the challenge.

André Loesekrug-Pietri, founder of JEDI.

“The uniqueness here, also a little bit inspired by climate models, is not just to have everybody come up with their own solution, but requesting that all teams come up with three different methods to screen these molecules on their binding affinity,” Loesekrug-Pietri said. Between the first and second stages of the competition, JEDI will take advantage of the medley of results produced by many teams using many approaches by cross-correlating the results from all the teams to produce a so-called “ultimate list.” “By cross-correlating these methodologies, you basically leverage out biases or errors,” Loesekrug-Pietri said, explaining that most researchers don’t cross-correlate their results internally – let alone with international teams using radically different methods.

The second stage, Loesekrug-Pietri said, is all about reducing the viral load, with the aim of reducing it by 99 percent. “We will ask the teams again to come up with very creative virology calculation methodologies using predictive algorithms to be able to pinpoint which of the compounds they want to test in terms of viral discharge,” he said. “We are then going to synthesize these ultimate compounds to go to stage two in order to really test. Because otherwise, you remain very theoretical, which is a really great step, but then you need to test it on real molecules.” The most promising candidate molecules in the ultimate list will be synthesized – if possible – and their potential to reduce viral load will be tested in the real world. “If you have affinity plus viral discharge,” Loesekrug-Pietri said, “then you are up to something really powerful.”

The third and final stage will focus on testing existing real-world therapeutics. “Stage three is basically one and two together, plus using that on existing FDA-approved drugs,” Loesekrug-Pietri said. JEDI, he explained, wanted to zero in on any and all drugs that researchers may have overlooked. “Here, we basically want to create serendipity and force people to also check on all the molecules where we already know the toxicity and where basically we can go directly into animal testing,” he said. After feedback from the scientific community, the third stage will also incorporate drug cocktails. “Look at how HIV went,” Loesekrug-Pietri said. “It took us 25 years to go from testing individual drugs, and today, the things that work are cocktails of up to ten different drugs that need to be taken in different phases.”

The supercomputing firepower

To enable the teams to conduct their research, JEDI has brought together a broad coalition of high-profile supercomputing and science organizations. HPC resources are being provided by GENCI, the French national high-performance computing organization; the Partnership for Advanced Computing in Europe (PRACE); and Deutsche Telekom (which Loesekrug-Pietri said is committing all of its CPU and GPU resources), among others.

JEDI is also working to distribute the resources evenly among participants. “What we’re currently building,” Loesekrug-Pietri explained, “is an interface where basically the participant can tap directly into these resources and request a certain number of hours – millions of core hours, probably – and it will distribute it by doing a bit of load balancing, if I can call it that.”

However, Loesekrug-Pietri isn’t even sure that load balancing will be necessary. “We have, probably, enough resources ourselves, but it’s very difficult to estimate – it will really be depending on the methods that people will use,” he said, adding that machine learning approaches can sometimes offer 30-fold speedups relative to brute force computing, complicating total demand estimates. In terms of capacity, Loesekrug-Pietri said that JEDI is aiming for “not unlimited, but close.” “We are in the tens, if not in the hundreds of millions of core hours,” he said.

Crowdsourced computing powerhouse Folding@home is working closely with JEDI, helping to provide targets for researchers to assail with candidate molecules. “The more targets we have on which teams will be able to run their billion compounds,” Loesekrug-Pietri said, “the more combinations of keys and locks. You can imagine that these become numbers which are just absolutely massive.” Folding@home’s John Chodera has joined the challenge’s scientific committee, which also includes leaders from a wide range of universities, research institutes and supercomputing centers.

Looking ahead

The challenge launches on May 1st. Loesekrug-Pietri estimates that the first two stages will each take around four weeks, with a couple of weeks between them to allow for cross-correlation of the lists. Stage three, however, may coexist with the other stages, depending on how teams are progressing through the challenge. Either way, Loesekrug-Pietri said, “we are looking for results before the end of June.” The challenge, he added, was built as open science, and participants will deposit their results into public libraries to aid global efforts against COVID-19.

“We think that we can probably … be much faster in this very long traditional testing phase without cutting corners,” Loesekrug-Pietri said. “By cross-correlating, by using this massive screening, we are able actually to automate a lot of the steps that today are the reasons why these clinical tests are so long – because they’re all very sequential. We’re trying to do a lot of things running in parallel.”

For JEDI, of course, the goal is to achieve a COVID-19 moonshot. “We already have high hopes that this will be a massive breakthrough,” Loesekrug-Pietri said.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire