ColdQuanta – Life in Quantum’s Slow (and Cold) Lane Heats Up

By John Russell

April 23, 2020

Work using cold atoms to leverage quantum effects for useful applications isn’t new. Think, for example, of atomic clocks and various sensing devices. But putting them to work as qubits in quantum computing is a relatively new idea. While ions have gained most of the attention here, one company, ColdQuanta, believes that using cold, neutral atoms (and Bose-Einstein condensate (BEC) effects) will end up being a much better approach that permits scaling to many thousands of qubits even while we are still in the so-called NISQ (noisy intermediate scale quantum) computing era.

DARPA seems to think there’s a fair chance that ColdQuanta is right and two weeks ago awarded the 13-year-old company a grant[I] to “develop a scalable, cold-atom-based quantum computing hardware and software platform that can demonstrate quantum advantage on real-world problems.” Currently, many qubit technologies are battling for sway – superconducting, optical, ion trap (also individual atoms, but charged), silicon spin, and a non-abelian anion. All of them have strengths and weaknesses.

Bo Ewald, ColdQuanta

“Over the next 40 months,” said Bo Ewald, ColdQuanta’s relatively new CEO. “We believe that we can scale this technology up and end up with a system that has thousands of qubits of pretty good fidelity, better connectivity, and more complicated gates than other approaches. By the end of the 40 months [length of the grant] we would be able to run this DoD real-world optimization problem as part of the program. It’s a radar coverage optimization problem.”

Ewald is a familiar figure in the quantum community. He was president of quantum pioneer D-Wave Systems for six years. While D-Wave’s quantum annealing technology approach has occasionally drawn mixed reviews, the company has nevertheless sold many machines, albeit research instruments, to industry and government. Ewald joined ColdQuanta roughly one year ago (March 2019).

Part of what makes the ColdQuanta so interesting is its breadth of aspiration. The company says its core technology has applications in everything from accelerometers, spoof-proof GPS devices, RF sensors, stealth communications, and much more. Quantum computing is just the most recent, and given the times, perhaps now the most visible initiative. In fact, ColdQuanta has been a supplier of a variety of quantum instruments and systems (including ion traps) for years. Two recent POC demonstrations of its cold atom (BEC) expertise went to the International Space Station – they include NASA/JPL’s Cold Atom Laboratory, CAL1 (2018) and CAL2 (2019), projects to test quantum matter behavior in space.

All qubit technologies have problems. One strength of using single atoms of the same element for a qubit is that by definition the qubits are identical. Also, neutral atoms, because they lack a charge, can be brought closer together more easily. The latter makes it easier to induce an interaction between outer shell (valence) electrons putting two atoms into “superposed state” to act as qubits. ColdQuanta leverages BEC characteristics and lasers to accomplish this.

Here’s a brief description from Ewald: “If you had a cloud of atoms of all of the same element, and you could cool them enough, very close to absolute zero, they would create a new form of matter. As you got them near absolute zero, they would coalesce into the Bose-Einstein condensate (some people describe this as a quantum gas). Steve Chu (MIT, later U.S. Secretary of Energy) showed in the 90s how you could use lasers to control atoms and won the Nobel Prize for it (physics, 1997). A laser has energy and mass and you can use it to hammer atoms and put tremendous force on the atoms, thousands of G’s of force on the atoms. In doing that, you can cause them to slow down or stop their motion. In your room, for example, atoms are moving around at around 600 miles an hour.”

“Researchers from the University of Colorado (CU) and from MIT followed up Chu’s work and demonstrated that if you created a highly-evacuated chamber and put atoms, thousands to a million atoms, of the same element in it, and then used lasers shining through windows in the chamber, you could stop the motion of the atoms enough that you would get them very near absolute zero. And bingo, they coalesce into this new quantum matter.”

Another CU researchers, Dana Anderson, went on to form ColdQuanta where he is now CTO. The original idea was to build laboratory equipment and systems to let people around the world build their own devices to create and manipulate quantum matter (BEC). This the company has done successfully.

“It turns out that if you don’t go quite as far as creating quantum matter (BEC), you can use the same basic idea and use a highly-evacuated glass, we’ll call it a cube, and put thousands to millions of atoms into it, and you can actually control those atoms, either as a cloud or on an individual basis,” said Ewald.

This is what ColdQuanta does. You need the right kind of element – one with favorable valence electrons. “You tend to use elements on the left side of the periodic table, so rubidium, for example, and cesium and others,” said Ewald. Under the right laser pressure, ‘lower energy’ wells are created, and it is possible to place atoms in the wells in an orderly configuration, and cause interaction (electron sharing) between atoms in neighboring wells. Currently, ColdQuanta is able to demonstrate at least 10×10 lattices with up to 100 qubits and the current technology should be possible to scale up to about 100×100 with up to 10,000 qubits. Ewald says next steps are to control a larger number of quantum logic gates.

This enhanced connectivity is a strength versus ion trap technology, where ions acting as qubits are typically aligned as a string of pearls. IonQ, an early pioneer using ion trap technology, has demonstrated lining up 13 ions of which 11 are functional. “I think there’s complete connectivity between those ions, but it’s a linear approach,” said Ewald who suggested that approach may be limited to 50 to 100 ions.

Both neutral atoms and ions boast longer coherence times than superconducting qubits but somewhat slower gate speeds. Also it’s worth mentioning that ion trap systems seem further along in development.

One of the cool things about the neutral atom approach is you don’t need the exotic refrigerators required by superconducting-based quantum computers. “That’s one of the great things about this technology. The lasers stop the motion of the atoms within this little glass cell, and so within the glass cell you’re very near absolute zero – you’re in the nano-Kelvin or micro-Kelvin range. But right outside the glass cell, it’s the ambient temperature. You don’t need a big cryostat. You know, you don’t need a dilution refrigerator. The cooling is really done by physics,” said Ewald.

Many challenges remain. For example, although the neutral atoms don’t repel each other as ions do they can drop out of position fairly easily. Said Ewald, “We have an atom tweezer that we’re working on. Suppose that we create this array of atoms and we’re missing one atom. We’re working on technology where you can effectively pick up an individual atom from the pool an insert it into the lattice if we’re missing one. So there’s a lot of work to be done, but my point is that our control over atoms is so fine that we can manipulate individual atoms.”

Ewald described the likely forthcoming ColdQuanta system as being comprised of a 3x3x3-foot cube housing the quantum part of the system – so fairly small – along with a few racks of traditional systems and electronics to control the lasers, etc. He estimated the system will require on the order of 10Kv.

A quantum computer BEC-based machine, of course, has still not been released; Ewald suggested one will be relatively soon with broader availability via the web perhaps in the fall.

The company, not surprisingly, will build its own low-level programming tools and environment, but emphasizes the plan is to work with the rapidly growing open source and commercial quantum software ecosystem. Access to the systems will likely include web-based access and perhaps sales of systems to customers.

It is clearly still early days for ColdQuanta’s quantum computing efforts.

As for near-term milestones, Ewald said “The two biggest visible milestones so far were the two launches of our technology on to space station. That proved the ruggedness of our technology. On the quantum computing side, the DARPA award is very significant for us. I think over the course of the next year or so, we should be able to demonstrate the technology at least starting to approach a hundred or so qubits that function and that you can do something with. Then over the next three years as part of the program, we [expect] to be getting into the thousands of qubits.”

Link to Ewald presentation: https://www.youtube.com/watch?v=OrEb0SQHdbY&feature=emb_rel_end

[i]Others on the grant include defense contractor Raytheon Technologies, Wisconsin–Madison, Argonne National Laboratory, University of Chicago, NIST Gaithersburg, University of Colorado Boulder, University of Innsbruck, and Tufts University.

Feature image: ColdQuanta hexagonal vacuum cell

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this year and double again by the end of next year as it transiti Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This